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MODELS OF DEDUCTION

P. N. Johnson-Laird
University of Sussex

Beyond the obvious facts that he has at
soLie time done manual labour, that he
takes snuff, that he is a Freemason, that
he has been in China, and that he has
done a considerable amount of writing
lately, I can deduce nothing else.

Adventures of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

It has become a truism that whatever else formal logic may be it is not
a model of how people make inferences. It perhaps provides a standard,
an ideal template, against which to assess the validity of inferences; and
this view has a considerable appeal until one considers just which particular
logic should play the role of the paragon. Logic is not a monolithic enter-
prise. There are many logics. Indeed, there are an infinite number of modal
logics, a mere branch of the discipline. Although the different branches
may be independent of one another, a choice of logic for, say, the temporal
expressions of natural language is quite likely to have implications for a
choice of logic for, say, such terms as “necessary” and “possible.” Many
qf the different linguistic suburbs—tense markers, modal terms, connec-
tives, quantifiers, and so on—are, for a logician, independent areas of in-
terest; and, despite the surge of interest in them (e.g., Montague, 1970;
Parsons, 1972), there is as yet no single comprehensive logic of natural
language (just as there is as yet no complete grammar). It may even be

7
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supposed that no single coherent logic can suffice for all the ways in which
language is used (van Fraassen, 1971). Yet, in spite of this reservation,
a central question endures: are there any general ways of thinking that
human beings follow when they make deductions?

The tenor of much recent psychological work provides a decidedly nega-
tive answer. The content of a reasoning problem seems to matter just as
much as its logical structure, determining not only how a problem is repre-
sented but also the sorts of inferences that are made. Wason and
Johnson-Laird (1972) have found evidence of such effects in a variety
of tasks, ranging from the testing of hypotheses to reasoning with proposi-
tions. Such findings coincide with an increasingly popular conception of
inference within artificial intelligence (AI).

One of the original aims of trying to program computers to carry out
intelligent activities was to devise automatic methods of theorem proving.
The intention was to devise programs that would both translate natural
language into expressions of the predicate calculus and operate on these
expressions with general theorem-proving procedures. Because it had long
been established that there could be no algorithm for proof within the
predicate calculus, much of this work was of a heuristic nature. Very often,
however, methods devized in a heuristic spirit turned out to be more power-
ful. Some methods even guaranteed, if a theorem could be proved, to find
a proof sooner or later. [There was, alas, no guarantee that the method
would reveal, where appropriate, that it was impossible to derive a given
conclusion; and this deficiency was the heart of Church’s (1936) proof
that there could be no general decision procedure for the predicate cal-
culus.] It follows that general proof procedures have one glaring disadvan-
tage: no matter how long they grind away at a problem, there is no way
of knowing whether or not they will ultimately come up with a solution.
If there is proof they will sooner or later discover it; but if there is no
proof, they may never find out. Therefore, the impetus behind such sophis-
ticated methods as the resolution principle and the hyperresolution princi-
ple (Robinson, 1965, 1966) was to increase the efficiency of programs
so that they would find proofs, where they existed, within a reasonable
amount of computing time. However, there is another difficulty with gen-
eral proof procedures. Before they can go to work on a problem, it has
to be represented in the predicate calculus; and it turns out that the busi-
ness of translating natural language expressions into their appropriate
symbolic form is extremely taxing. Ordinary language does not wear its
logical heart on its sleeve, and there are often surprising divergences be-
tween the superficial form of an expression and its underlying logic. Once
again, there is no known general procedure for carrying out correct transla-
tions (see Johnson-Laird, 1970).
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One reaction to these difficulties has been to try a different tack. Instead
of representing putative theorems in the notation of the predicate calculus
and then grinding away at them with a general proof procedure, they are
represented as programs. When such programs are executed they control
the process of trying to discover the proof. This idea forms the basis of
Hewitt’s (1970) theorem-proving language PLANNER, which has been
exploited so successfully in Winograd’s (1972) program for understanding
natural language. One obvious advantage of the method is that it allows
information and deductive procedures, pertinent to the particular content
of a problem, to be taken into account in the theorem-proving process.
The system therefore gains greatly in efficiency; and, if the psychological
experiments are to be believed, it is also a better model of the human
deductive process. There is accordingly a general tendency in both psycho-
logical and AI circles to emphasize goal-oriented inferential procedures.
This tendency is also evident in recent work on uniform proof procedures,
especially in the development of predicate logic as a programming language
(Kowalski, 1973). The aim of this chapter, however, is to attempt to re-
dress the balance and to examine to what extent there may be general
principles of thought that are independent of any particular problem do-
main. In examining this topic, three main sorts of inference are discussed:
lexical reasoning, propositional reasoning, and reasoning with quantifiers.
A few new experimental results are presented but the emphasis is on de-
veloping models of deduction.

LEXICAL REASONING

Perhaps the most obvious sort of inference-——so obvious, in fact, that
it is hardly noticed in ordinary discourse—involves simple relations between
such lexical items as nouns, verbs, adjectives, etc. The meanings of words
are, of course, often interrelated, and a speaker’s knowledge of such inter-
relations acts very much as a smoothing oil to help the inferential ma-
chinery revolve. If, for example, a law states that all dog owners must pay
a tax, then from the statement “He owns a poodle,” it may readily be
inferred, “He must pay the tax.” From a formal point of view such an
inference is invalid: it lacks the premise, “All poodles are dogs.” In daily
life, however, human beings do not behave like logicians; they know that
poodles are dogs, and they exploit this knowledge without a thought to
the canons of formal logic. .

Logicians have tended to ignore this aspect of practical reasoning, al-
though the device of meaning postulates (see Carnap, 1956; Bar-Hillel,
1967) was developed to deal with the logical consequences of the semantic
relations between words. Psychologists, however, have recently been very
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active in investigating such relations under the guise of studying “semantic
memory.” A few salient points of these studies are perhaps worth delineat-
ing (for a more extensive review, see Johnson-Laird, 1974). The over-
whelming majority of studies have concerned nouns and, in particular, the
relation of class inclusion between them. They have shown that where there
is a hierarchy of class inclusion, such as poodle: dog: animal, it may take
time to grasp the transitivity of the relation. It may take time, in other
words, to recover the fact that a poodle is an animal. A variety of compet-
ing theories have been proposed to explain this phenomenon (e.g., Collins
& Quillian, 1969; Landauer & Meyer, 1972; Schaeffer & Wallace, 1970).
None of these theories is entirely satisfactory, if only because there are
occasions in which the transitive relation is easier to retrieve than its constit-
uents, e.g., “a poodle is a mammal” is harder to verify than “a poodle
is an animal” even though mammals are included in the class of animals
(Rips, Shoben, & Smith, 1973). Nevertheless, it remains true that not all
semantic relations are obtainable from the lexicon with the same ease. It
is necessary to work, albeit for a few hundredths of a second, to retrieve
more recondite relations. And such work, of course, has the logical form
of an inference. Indeed, when Graham Gibbs and I gave subjects an infer-
ential task, involving such material as

Flowers are killed by this chemical spray.
Therefore, roses are killed by this chemical spray.

We obtained results comparable to more conventional studies of semantic
memory. In certain cases (e.g., python: snake: reptile) a transitive infer-
ence took longer than inferences involving its constituents; in other cases
(e.g., pine: conifer: tree) a transitive inference took less time than the
inferences involving its constituents.

What sort of semantic relations are there between the meanings of
words? The simple relations include synonymy (e.g., automobile—car),
antonymy (e.g., man-woman), and class inclusion (e.g., dog—animal); and
these relations give rise to corresponding relations between sentences in
which the words occur. It is no accident that studies of semantic memory
have concentrated on class inclusion: it is a potent relation because it leads
to transitive inferences. Similar transitive hierarchies can be generated by
the relation of spatial inclusion and sometimes by the relation part of. How-
ever, the obvious source of transitive relations is comparative adjectives,
e.g., “larger than,” “better than,” and expressions of the general form
“more x than.” 1t is a simple matter to infer that if q is larger than b,
and b is larger than c, than a is larger than ¢. However, so much contro-
versy has arisen over various details of the process (see Huttenlocher &
Higgins, 1971; Clark, 1971) that certain broader issues have been ignored
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in the quest to explain experimental findings. One such issue, the represen-

tation of the transitivity of a relational term, is considered below.
There are other patterns of lexical inference apart from transitivity. An

intransitive relation (R), for instance, permits an inference of the form

aRb and bRc .. not (aRc)

The relation “next in line to” is obviously intransitive because if a is next
in line to b, and b is next in line to ¢, then it follows that @ is not next .
in line to c. A nontransitive relation, however, permits neither the transitive
nor the intransitive inference; for example, if a is next to b, and b is next
to ¢, then nothing follows about whether g is next to c—the items may
be arranged in a circular fashion or in a line.

Another aspect of the logic of relations concerns symmetry. A relation
is symmetrical if it permits an inference of the form

aRb .. bRa

The relation next to is symmetrical because if a is next to b, then it follows
that b is next to a. A relation is asymmetrical if it permits an inference
of the form

aRb .. not (bRa)

The relation on the right of is clearly asymmetrical. A relation is nonsym-
metrical if it permits neither of these inferences; the relation nearest to
is clearly nonsymmetrical.

There are still other logical properties of relational terms, such as reflexi-
tivity and connectivity, but their role in ordinary language appears to be

. negligible. However, because transitivity and symmetry are independent

attributes, the lexicon already contains a variety of relations. They are
exemplified in Table 1 by a set of spatial expressions.

The semantic representation of relational terms must include information
about their transitivity and symmetry. For example, the representation of
“beyond” must permit a transitive inference, whereas the representation
of “nearest to” must prevent it. What has yet to be determined is precisely
how this representation is effected. It is possible that each relational term
has stored with it in the mental lexicon a simple tag indicating a transitivity
value and another tag indicating a symmetry value. Where a term R is
tagged as transitive, it permits an inference of the form

aRb and bRc > aRc

This conception evidently requires inference schemata to be separately speci-
fied as adjuncts to the lexicon. A more plausible system, however, renders
the transitivity of a relation self-evident from its semantic specification,
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TABLE 1
Spatial Expressions as Exemplars of the
Logical Sorts of Binary Relations in
Ordinary Language

Transitive Symmetric

In the same location as [as x as] +
Beyond [more x than] +
Not beyond [not more x than] +
Next in line to
Directly on top of
Nearest to

Next to

On the right of
At

+

©coco | | |
| + 0 | + o0

(o}

+transitive = transitive; —transitive = intransitive; o transitive
= nontransitive;

+ symmetric = symmetric; — symmetric = asymmetric; o sym-
metric = nonsymmetric.

i.e., the conclusion aRc would be self-evident from the joint represen-
tation of aRb and bRc. A way of representing quantified statements (e.g.,
“All bankers are prudent men”) with just this property is described below.
The best evidence for this sort of representation for simple relational terms

is provided by inference about spatial relations. Consider the following
inference:

The box is on the right of the chair.
The ball is between the box and the chair.

Therefore, the ball is on the right of the chair.

The most likely way in which such an inference is made involves setting
up an internal representation of the scene depicted by the premises. This
representation may be a vivid image or a fleeting abstract delineation—its
substance is of no concern. The crucial point is that its formal properties
mirror the spatial relations of the scene so that the conclusion can be read
off in almost as direct a fashion as from an actual array of objects. It may
be objected, however, that such a depiction of the premises is unnecessary,
that the inference can be made by an appeal to general principles,
or rules of inference, which indicate that items related by between must
be collinear, etc. However, this view—that relational terms are tagged
according to the inference schemata they permit—founders on more
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complex inferences. An inference of the following sort, for instance, seems
to be far too complicated to be handled without constructing an internal
representation of the scene

The black ball is directly beyond the cue ball. The green ball is on
the right of the cue ball, and there is a red ball between them.

Therefore, if I move so that the red ball is between me and the black
ball, then the cue ball is on my left.

Even if it is possible to frame inference schemata that permit such an infer-
ence to be made without the construction of an internal representation,
it is most unlikely that this approach is actually adopted in making the
inference. The only rules of inference that are needed are a procedure for
setting up a joint representation of separate assertions and a procedure
for interrogating the joint representation. Much of the work can be done
by the semantic information in the lexicon; and the same principle of allow-
ing lexical information to specify directly the logic of a relation can apply
equally well to abstract terms with meanings that are difficult or impossible
to visualize directly. With concrete or abstract terms, the structure of a
joint representation is isomorphic to its logic in a way that is exemplified
below in the analysis of quantified inference.

Perhaps the most potent source of lexical inferences is the set of verbs of
a language. The same sorts of relation obtain between them as between other
lexical items—relations such as antonymy (e.g., open—shut), and class in-
clusion (e.g., assassinate—murder—kill). However, verbs can often be used
to express relations between several arguments, rendering even the simple
analysis of a relation and its converse (e.g., buy—sell) a complicated matter.
The additional complexity of verbs does, indeed, lead to some interesting
problems. Consider the following typical sorts of inference that depend
on the meanings of verbs:

Pat forced Dick to refrain from swearing.
.. Dick refrained from swearing.
.. Dick did not swear.

Sam managed to prevent Dean from pretending to be naive.
.. Sam prevented Dean from pretending to be naive.

.. Dean did not pretend to be naive.

. Dean was not naive.

John regretted that he had no chance to lie.
.. John had no chance to lie.
.. John did not lie.
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These examples illustrate ways in which inferences may be drawn about -

the truth or falsity of a clause occurring as the complement of a verb.
For example, if someone forces x to do z, then it may be inferred that
x did z, whereas if someone prevents x from doing z, then it may be in-
ferred that x did not do z. The validity of these inferences depends on
the meaning of the verbs and, in particular, on the fact that their semantic
representation contains a conjunction of separate elements of meaning. The
essentially conjunctive nature of many verbs is perhaps more evident in
the semantics of causal verbs:

He moved the table.
. He did something and consequently the table moved.

He showed us the picture.
. He did something and consequently we could see the picture.

He gave her the book.
He had the book and he did something and consequently she

had the book.

The logic of these inferences can largely be captured by treating the con-
cept of cause as a special sort of conjunction (see Miller & Johnson-Laird,
1975). Of course, it is very much more than a simple conjunction and
seems to involve the following conditions in ordinary language (pace
Dowty, 1972):

a caused b if and only if: (i) @ happened;
(ii) b happened;
(iii) it is not possible for a to hap-
pen and b not to happen after-
ward.

The important point, however, is that it is seldom necessary to take the
analysis so far in order to explain the inferential properties of causal verbs.
A conjunctive analysis usually suffices.

In short, lexical reasoning is noteworthy not for the novelty of its pat-
terns of inference but for the speed and smoothness with which its infer-
ences occur. They are sometimes so immediate as to pass unnoticed. Their
patterns include simple relational schemata and, especially in the case of
verbs, simple propositional inferences.

PROPOSITIONAL REASONING

It has been realized since antiquity that one source of inferential rela-
tions is the manner in which sentences, or clauses, are combined. Language
provides a variety of connectives, such as “and,” “or,” and “if,” that can
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be used to combine clauses expressing propositions, e.g., “The boat has
gone, or else it has been sunk and no trace of it can be found.” To know
what these connectives mean is tantamount to knowing how to draw certain
inferences on the basis of the formal patterns in which they occur. For
example, a speaker can hardly be said to have fully grasped the meaning
of “or” unless he appreciates the validity of an inference such as

The boat has gone or else it has been sunk.
It has not been sunk.
Therefore, it has gone.

The logic of connectives has been most fully explored in the development
of the propositional calculus. There are, in fact, a variety of different calculi
and a variety of different ways of formulating them. However, a brief and
informal exposition of the standard calculus will suffice here. If lower case
letters are allowed to range over propositions, then the calculus can be
formalized by specifying what counts as a well-formed formula, and by
stating a set of axioms such as

1. (porp)->p

2.p—>(porgq)

3. (p orq)—>(q or p)

4. (p—>q) = [(r or p) > (r or q)]

where the arrow is a sign for material implication. In addition to the
axioms, two rules of inference are necessary. The first rule of inference
allows new formulas to be generated by substituting any well-formed for-
mula for a propositional variable in an expression, and the second rule
of inference, the so-called law of modus ponens, may be stated as follows:

From a formula A together with a formula if A then B, the formula
B may be deduced.

It is fairly simple to show that these axioms and rules suffice to derive
all the formulas that are true on the logical interpretations of the
connectives. .

What does such a system state about the reasoning of intelligent but logi-
cally naive persons? The answer must surely be: very little. However, it
is worth dwelling on the system for a moment because at least one influen-
tial psychologist, Piaget, has used it as the basis of a model of reasoning
(Beth & Piaget, 1966) and because the contrast between it and ordinary
deduction is instructive,

Among the more obvious difficulties of using the propositional calculus
as a model of ordinary deduction is the fact that its connectives can stand
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only between fully fledged propositions. In ordinary language simple con-
stituents, such as noun phrases, may be linked by a connective. A sentence
such as

Mark and Anne are excellent riders
is easily translated into a form suitable for the calculus:
Mark is an excellent rider and Anne is an excellent rider.

However, there is no comparable procedure for dealing with such sentences
as:

Mark and Anne make a splendid couple.

This sentence must be treated as a single proposition. Another difficulty,
of course, is that the calculus is truth functional: the meaning of its connec-
tives is defined purely in terms of the truth value they give to a complex
proposition as a function of the truth values of its constituents. The multi-
farious connectives of ordinary language (e.g., because, before, although)
cannot be completely captured in a purely truth-functional calculus. Nor,
indeed, can the logic of commands or questions be immediately accommo-
dated within its essentially assertive framework.

A further divergence between logical calculi and the inferential ma-
chinery of everyday life concerns their respective functions. Calculi are
devised primarily for deriving logical truths. The aim of practical inference,
however, is not to prove theorems but to pass from one contingent state-
ment to another. Therefore, practical inference is likely to involve few,
if any, axioms but a relatively large number of rules of inference. A formu-
lation of the calculus that is therefore more appropriate abandons axioms
in favor of a system of rules analogous to Gentzen’s method of “natural”
deduction, an approach that has had some influence in the development
of theorem-proving programs (e.g., Amarel, 1967; Reiter, 1973). A system
of natural deduction involves the specification of rules of inference in a
schematic form. The rule of modus ponens, for example, is stated in the
following schema:

A If A then B

. B!

where the premises appear above the line and the conclusion appears below
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such schemata from which all the others can be derived. For instance, nega-
tion and disjunction may be taken as primitive, inference rules stipulated
for them, and the remaining connectives simply defined in terms of negation
and disjunction. From a psychological point of view, however, it would
be foolish to seek parsimony at the expense of plausibility. What is needed
is a set of psychologically basic patterns of inference.

Any decision about whether a pattern of inference is psychologically
basic is ultimately an empirical matter. It is necessary to find out whether
the inference is in the immediate repertoire of mature but logically naive
persons. An inference schema can hardly be considered as basic if most
people are incapable of carrying it out or can only do so in a matter of
minutes, subsequently giving a detailed resumé of a whole chain of deduc-
tions they have carried out to make the inference. Unfortunately, there
is not enough evidence to determine the definitive set of basic patterns
of inference. What can be done, however, is to build up a plausible first
approximation to it, taking care not to include any inferential schema
known to cause difficulty to logically naive subjects. The fact that an infer-
ence is feasible for the majority of people suggests that it is basic but is
hardly a decisive proof: the inference may be the result of combining sev-
eral other inferences. Only those inferences that seem prima facie to be
basic are therefore included in the following set, but in many cases the
final decision must depend on further investigations.

Some extremely simple inferences are considered first. It is obvious that
from a clause expressing the meaning 4 one can immediately deduce a
clause expressing the same meaning, 4. (This way of writing in terms of
clauses expressing meanings is excessively cumbersome; from now on I
shall write simply of propositions, although it must not be forgotten that
I am dealing with inferences expressed in natural language.) Simi-
larly, the conclusion 4 can be immediately deduced from a proposition
of the form 4 or A. These inferences are summarized in the following
schemata:

- M)
A

Aord
oA @

Although inferences of this sort may sometimes rely on complex lexical
inferences, their structure is very simple and can hardly be derived
from anything more basic. The question is whether these inferences
may not be too trivial to be useful. In fact, they do have a role
to play, and a model of propositional inference is defective without them.
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The same may be said about some further schemata. The first pair permit
a proposition to be inferred from its occurrence in a conjunction:

Aand B 3

a4 (3a)

Aand B (3b)
.. B

The second pair permit a disjunction to be inferred from either one of
its constituents:

4 4
. AorB (42)
4

L Bord (4b)

The third pair permit a conjunction to be inferred from the independent
occurrence of its constituents:

A B
—_— Sa
.. Aand B 2)
S Band A (59)
And the final pair permit negated conjunctions to be deduced:
A and not —B (62)
.. not both Aand B
not —A and B (6b)

.. not both A and B

A real problem with these simple patterns of inference is to find a suit-
able way to curb their productivity. As a number of authors have recently
pointed out, there are constraints on what can reasonably be expressed
in the form of a conjunction or a disjunction. It may be true, for example,
that boys eat apples, and that Mary threw a stone at the frog, but the
conjunction

Boys eat apples and Mary threw a stone at the frog

is, as Lakoff (1971) argues, barely acceptable. It is customary to suit an
utterance to its context, and this principle applies to the relations between
clauses as well as to the relations between sentences. Hence, if a speaker
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follows one clause with another explicitly specifying what seems to have
been taken for granted, then he creates an extremely odd conjunction, e.g.,

John ran out of the house and he got out of bed (Johnson-Laird,
1969a).

All of John’s children are bald and John has children (Karttunen,
1973).

The existence of constraints on the topics of conjunctions and disjunctions
can hardly be doubted. Indeed, the constraints on “but” proved sufficient
for that conjunction to be used by Bendix (1966) as the basis of a semantic
test. However, there is no adequate explication of a complete set of con-
straints. One solution is therefore to do away with the simple inference
schemata that give rise to the free combination of propositions in conjunc-
tions and disjunctions. Unfortunately, it is impossible to do without these
rules of inference. They are needed in order to make such deductions as

It is frosty.
If it is foggy or frosty, then the game will be canceled.

Therefore, the game will be canceled.

For the time being, schemata (1) to (6) shall be called “auxiliary infer-
ences,” for reasons that will become clear when the method of curbing
their power is described.

In contrast to the auxiliary inferences, there are a number of primary
patterns of inference that have no restrictions placed on them. There is
among them the familiar pattern exemplified in the following inference:

John is intelligent or he is rich.
He is not rich.

Therefore, he is intelligent.

There is good reason to suppose that its underlying schema

AorB not —A4 2
T3 (72)
AorB not —B

(7b)
LA

is basic. A study by Hill (cited in Suppes, 1965) found that 82% of a
sample of 6-year-old children were able to make the inference correctly.
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Johnson-Laird and Tridgell (1972) found that it led to errors only when
the negative occurred in the disjunctive premise, e.g.,

John is intelligent or he is not rich.
He is rich.

With premises of this sort, some of their adult subjects inferred that John
was not intelligent, whereas other subjects considered that no conclusion
followed from the premises. Such a finding suggests, however, not that the
schema is intrinsically difficult but that an unusual placement of negative
information can disturb its smooth execution.

The patterns of inference in (7) are valid both for an inclusive disjunc-
tion, where both constituent propositions can be true, and for an exclusive
disjunction, where this possibility is ruled out. There is a further rule of
inference that applies only to exclusive disjunctions, e.g.,

Either Mary is a plagiarist or else she is a genius (but not both).
She is a genius.

Therefore, she is not a plagiarist.

The real force of this inference derives from the exclusivity of the two
propositions in the disjunction. It is therefore plausible that the basic infer-
ential schema should be formulated in the following way:

Not both A and B A
. not —B

(82)

Not both A and B B
.. not —A

(8b)
The main candidate for a basic pattern of inference involving the condi-

tional is modus ponens:

A If A then B
B

©®)

There is considerable evidence to suggest that this schema is basic, whereas
a closely related pattern, known as modus tollendo tollens, is not (see
Wason & Johnson-Laird, 1972). The latter inference has the following
form:

Not —B If A then B
. not —A

Intelligent subjects can make inferences of this sort but they tend to do
so with a greater difficulty than with modus ponens and it is natural to
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suppose that they are carrying out a sequence of inferential steps rather
than a single inference. They may, in fact, be arguing in the following way:

If the safe is locked, then this light is on.
This light is not on.

Suppose the safe is locked.

It follows then that the light is on (by modus ponens).

But the light is not on (from the premise).

Therefore, the assumption leads to an impossible, contradictory state
of affairs.

Therefore, the assumption is false: the safe is not locked.

This sort of argument is, of course, a reductio ad absurdum and requires
an inferential schema of the form

A implies (B and not —B)
: (10
onot—A

It is certainly true that logically naive persons can argue by a reductio
(Evans, 1972); and it can be accepted as basic instead of modus tollendo
tollens, although a completely convincing justification for this choice cannot
be established at present.

There are two subsidiary points about the reductio schema in (10).
First, a conditional may equally well have been used in place of the impli-
cation, because if one proposition can be derived from another, then this
fact can be expressed by a conditional

A implies B
IR (11)
S If A then B

Second, where a reductio is used to establish the falsity of a negative propo-
sition, it is necessary to be able to eliminate the resulting double negation,
e.g., “It isn’t the case that 5 is not odd” becomes “5 is odd.” A simple
schema makes this elimination possible:

not not —A
LA 12)
Its seeming simplicity, however, may be deceptive. At least one school
of logicians, the intuitionists, have excluded this rule from their canon.
These logicians, represented by Heyting (1956), are primarily worried
about certain sorts of mathematical reasoning. In particular, they are con-
cerned with inferences involving infinite sets and argue that such inferences
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must involve constructive and intuitive principles. They claim that it is
not sufficient, in order to demonstrate the existence of a mathematical
property, to show that its universal denial leads to a contradiction. Hence,
the intuitionists reject the law of the excluded middle, i.e., the principle
that either a proposition or its negation is true. They consequently reject
the related principle for eliminating double negations. The relation between
the intuitionist and the classical calculus of propositions is not so straight-
forward as might be imagined; Godel (1933) has shown that the classical
calculus can nevertheless be treated as contained within the intuitionistic
calculus! It shall be assumed here, however, that the elimination of double
negations is a feature of ordinary reasoning.

The dozen inference schemata that have now been stated constitute a
plausible set of psychologically basic patterns of deduction. There are other
forms of inference that, although probably not basic, are well within the
competence of most people, and a way must certainly be found for incorpo-
rating them into the model. One example of such an inference is the simple
dilemma, e.g.,

The President is dishonest or he is incompetent.
If the President is dishonest, then he will be forced to resign.
If the President is incompetent, then he will be forced to resign.

Therefore, the President will be forced to resign.

Such an argument places an adversary literally on the horns of a dilemma,
because no matter which of the alternatives he chooses from the initial
disjunction, he is forced to accept the same conclusion. The rhetorical force
of such arguments was, indeed, recognized by Cicero (see Kneale & Kneale,
1962; p. 178). However, the argument can be considered, for psychological
purposes, as merely a special case of a more general pattern of inference:

AorB If A then C If B then D
~CorD

If C is substituted for D in this schema, then the derived conclusion be-
comes C or C, and this conclusion, in turn, is immediately reducible to
C by an auxiliary inference. It is feasible that the simple dilemma is derived
in this way from the more general argument. A comparable chain of infer-
ence, which indeed is not logically independent of the general dilemma,
is the so-called hypothetical syllogism. This pattern of inference makes
explicit the transitivity of conditional propositions
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Obviously, a way must be found to insure that the model permits such
inferences to be drawn.

There are a number of simple equivalences that cannot be established
by the present rules of inference, e.g., “Neither John can come nor Mary
can leave” is equivalent to “John can’t come and Mary can’t leave.” It
would be a simple matter to introduce schemata for them, but it would
be slightly odd to treat such relations by way of rules of propositional
inference. A more sensible solution is to assume that inferences based on
synonymy are just special cases of the schema A4/ .. 4, and that synonymy
is established on linguistic grounds. In other words, the complete mecha-
nism of lexical inference is at the disposal of the propositional machinery.
Indeed, it may be said that reasoning with propositions is simply a matter
of grasping the meaning of those lexical items that happen to be connec-
tives. This view is certainly suggested by considering the question of how
patterns of inference are acquired in the first place. Where, indeed, do
they come from? And how are they fitted together into a coherent system?
One plausible conjecture is that the basis of the whole process is the acqui-
sition of the truth conditions of the various connectives. Perhaps this notion
should be broadened to include the extensional conditions for commands
and questions, etc.; however, for the sake of simplicity only the truth con-
ditions of assertions shall be considered here.

In the standard formalizations of the propositional calculus, including
the method of natural deduction, nothing explicit is said about the truth
conditions of the various connectives. When the calculus has been axioma-
tized, a theorem is defined as a formula that can be derived from the
axioms by the rules of inference. This sort of definition, and the equivalent
sort for the method of natural deduction, is essentially formal: it provides
purely syntactic criteria, pertaining solely to the manipulation of symbols,
for what counts as a theorem. It is also possible, however, to define a valid
formula—a formula that is a logical truth. The usual way of carrying out
such a definition, as demonstrated below, is to set up a semantical model
in the spirit of Tarski (1956). This model may be treated as a mathemati-
cal entity involving certain marks on paper, such as “T” and “F,” or alter-
natively it may be interpreted so as to involve certain concepts, such as
truth and falsity. Logically speaking, a crucial issue is whether the calculus
is complete. A proof of its completeness amounts to showing that the set
of formulas derivable from the axioms is one and the same as the set of
valid formulas defined by the semantical model. It is a fairly simple matter
to show that the standard formalizations of the propositional calculus are,
indeed, complete.

The issue of completeness has no obvious counterpart in the psychologi-
cal modeling of inference. The reason it disappears is, in my view, simply
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that the whole system is semantically based. The conditions in which con-
junctions, disjunctions, etc., are true and false are learned and, from these
conditions, the basic patterns of inference are derived. A competent adult
therefore has at his disposal both the inference schemata and their under-
lying semantic basis.

The development of a semantical model for the propositional calculus
typically involves the following sorts of conditions:

1. A negative proposition, not A4, is true if and only if A4 is false.
2. A conjunction, A and B, is true if and only if A is true and B is
true.

3. A disjunction, 4 or B, is true if and only if A4 is true or B is true.

There are two difficulties, however, one linguistic and the other metalin-
guistic, in regarding such principles as part of a psychological basis for
the semantics of connectives.

The metalinguistic difficulty is caused simply by the lack of any obvious
psychological correlate of the logician’s distinction between an object lan-
guage and a metalanguage. In the truth conditions above, the reader will
have noticed that the connectives themselves actually occur as part of their
own definitions. Logically, there is nothing objectionable in this practice be-
cause the conditions for the object language connectives are being stated in
a quite separate language, the metalanguage. However, it is rather unfortu-
nate that this metalanguage turns out to be ordinary English. If it is claimed
that learning the truth conditions of ordinary connectives amounts to learn-
ing rules of the sort illustrated above, then a vicious circle is created be-
cause these rules presuppose a knowledge of the meaning of ordinary
connectives. This problem seems to have been overlooked by many of the
linguists engaged in setting up semantical bases for natural language (e.g.,
Keenan, 1970). Its solution presumably involves some more abstract form
of mental representation for metalinguistic information about natural
language.

'~ The linguistic difficulty with the semantical rules concerns the interpreta-
tion of conditional statements and it goes to the heart of the problem of
using the propositional calculus as the basis of a psychological model. Con-
ditionals in ordinary language are, of course, capable of a great many

_different sorts of interpretation. They may be used to state temporal,
causal, or logical relations between propositions. It is only relatively rarely
that they fit the requirements of the calculus, for example, in conveying
a material implication. Such an implication is true provided its antecedent
is false or provided its consequent is true, e.g., “If this picture isn’t by
Picasso, then it’s by Braque.” The majority of everyday conditionals, how-
ever, are not rendered true merely by establishing that their antecedents
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are false. A statement such as “If this picture is by Picasso, then it was
painted in 1910” is simply irrelevant—neither true nor false—if the picture
in question turns out not to be by Picasso. It is one of the fictions of the
propositional calculus as a model of ordinary deduction that propositions
always have a truth value. The calculus does not permit truth-value gaps.

The distinction between a material implication and a conditional with
a truth-value gap may be considered trivial. In fact, however, it leads to
a clear divergence between the logical calculus and ordinary inference. The
following bizarre inference for instance, counts as valid if conditional state-
ments are treated as material implications:

You can’t both hate Mailer and admire him.
If you hate Mailer, then you will soon give up reading his work.
If you admire Mailer, then you will read his entire works.

Therefore, if you hate Mailer you will read his entire works, or if
you admire Mailer you will soon give up reading his work.

The validity of the argument turns simply on the fact that a material impli-
cation is true whenever its antecedent is false, and one of the two condi-
tional antecedents in the conclusion must be false according to the first
premise.

A more plausible account of conditionals should permit them to lack
a truth value. The semantical rule for the conditional connective might then
be stated as

A conditional if A then B has a truth value if and only if A4 is true;
and it is true if and only if B is true.

'

The trouble with this analysis, however, is that it leaves out of account
the strong intuition that there should usually be some sort of connection
between 4 and B in order for a conditional of the form If A then B to
be true. It also, of course, runs entirely counter to the evaluation of many
conditionals that, ex hypothesi, have antecedents that are false or as yet
unfulfilled, e.g., such counterfactual conditionals as “If Hitler had been
a successful painter, then World War II would not have occurred,” and
such conjectural conditionals as “If the Russians invade West Germany,
then World War III will occur.” Evidently, these conditionals are not truth
functional.

What happens when you evaluate a conditional appears to depend on
whether or not you already assent to its antecedent, and whether or not
you already assent to its consequent. As Ramsey (1950) pointed out long
ago, if you have no view about the antecedent, then for the sake of argu-
ment you add it to your set of beliefs and then consider whether or not




