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Peirce, logic diagrams, and the elementary
operations of reasoning

P.N. Johnson-Laird

This paper describes Peirce’s systems of logic diagrams, focusing on the so-called
“existential” graphs, which are equivalent to the first-order predicate calculus. It
analyses their implications for the nature of mental representations, particularly
mental models with which they have many characteristics in common. The graphs
are intended to be iconic, i.e., to have a structure analogous to the structure of what
they represent. They have emergent logical consequences and a single graph can
capture all the different ways in which a possibility can occur. Mental models
share these properties. But, as the graphs show, certain aspects of propositions
cannot be represented in an iconic or visualisable way. They include negation, and
the representation of possibilities qua possibilities, which both require representa-
tions that do not depend on a perceptual modality. Peirce took his graphs to reveal
the fundamental operations of reasoning, and the paper concludes with an analysis
of different hypotheses about these operations.

Deduction is that mode of reasoning which examines the state of things asserted in
the premisses, forms a diagram of that state of things, perceives in the parts of the
diagram relations not explicitly mentioned in the premisses, satisfies itself by
mental experiments upon the diagram that these relations would always subsist, or
at least would do so in a certain proportion of cases, and concludes their necessary,
or probable, truth.

Peirce (1.661)

The American philosopher Charles Sanders Peirce (1839–1914) was a great
logician. He discovered the central branch of logic known as the predicate
calculus independently from Frege. Frege published in 1879; Peirce published in

1This paper follows the standard notation for citing papers in Peirce’s (1931–58) Collected
works, e.g., “1.66”, refers to Vol. 1, paragraph 66, which is the first paragraph of a paper, “The
logic of relatives”, first published in 1883. For unpublished works, see www.peirce.org
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1883 (3.328). Peirce also invented truth tables, higher-order predicate calculi,
and systems of modal logic. However, his work has often been overlooked
because his career in academia was tragically short, and because many of his
papers were unpublished or unfinished in his lifetime. He developed an algebraic
notation for logic similar to modern systems. He improved Venn’s logic
diagrams (see 4.357; Shinn, 1994). But he also devised two diagrammatic
systems for logic, which were powerful enough to deal with sentential
connectives such as “if” and “or”, and quantifiers such as “all” and “some”. That
is, they corresponded to the predicate calculus. They also, he claimed, “[render]
literally visible before one’s very eyes the operation of thinking in actu” (4.6),
and “put before us moving pictures of thought” (4.8). His work anticipated the
semantic networks of artificial intelligence (Sowa, 1984), discourse
representation theory in linguistics2 (Kamp, 1981; Kamp & Reyle, 1993), and
the theory of mental models in psychology (Johnson-Laird, 1983; Johnson-Laird
& Byrne, 1991). It has inspired Sowa’s theory of conceptual graphs (Sowa,
1984, 1997), a text book on logic (Ketner, 1991), and the work of Jon Barwise
and his students on diagrammatic systems of reasoning (e.g., Hammer, 1995;
Shinn, 1999).

Cognitive psychologists, however, are largely ignorant of Peirce’s diagrams.
The present author knows of no psychological study of reasoning that describes
them (pace, e.g., Anderson, 1996; Bauer & Johnson-Laird, 1993; Larkin &
Simon, 1987; Lindsay, 1988; Schwartz & Fattaleh, 1972; Stenning &
Oberlander, 1995); and he himself became aware of them only by chance. The
diagram systems, or “logic graphs” as Peirce called them, have a reputation for
being obscure and hard to understand. They are not mentioned in the standard
histories of logic (e.g., Bochenski, 1961; Kneale & Kneale, 1962; Styazhkin,
1969). And Gardner (1982) in his excellent compendium of diagrammatic
systems for logic describes the task of understanding them as formidable, and
does not explain them. Yet they make possible proofs of all and only the valid
theorems of the predicate calculus, and they are no more difficult to understand
than the calculus itself. And, as Peirce himself realised, they are highly pertinent
to the operations of the mind. Most other diagrammatic systems, such as Euler
circles and Venn diagrams, lack the power of the full predicate calculus and are
relevant to pedagogy or to computational implementations (see, e.g., Glasgow,
Narayanan, & Chandrasekaran, 1995). Readers who want a detailed account of
Peirce’s graphs should consult Roberts (1973). He provides a magisterial survey,
and proves the completeness and consistency of the “existential” graphs. In
contrast, the aims of the present article are threefold: first, to give an account of
the graphs that requires no prior knowledge of logic and avoids Peirce’s jargon
as much as possible; second, to consider their implications for mental

2Sowa (1997, p. 432) writes that Kamp’s discourse contexts are isomorphic to Peirce’s.
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representations , particularly mental models with which they share many
characteristics; and, third, to show how they illuminate the elementary
operations of reasoning.

PEIRCE’S TWO SYSTEMS OF DIAGRAMS

Peirce devised two separate, though related, diagrammatic systems. His initial
inspiration seems to have been chemical diagrams, and he devised diagrams of
relations that are remarkably similar to modern semantic networks (see, e.g.,
Peirce, 3.469). He was also stimulated by Kempe’s (1886) graphical notation for
mathematical reasoning (see 3.423, and Peirce, 1992, p. 150). Peirce’s first
system of so-called “entitative” graphs was based on the assumption that each
proposition written on a page represented a disjunctive alternative. The system is
a precursor to methods of theorem proving developed for computer programs
that depend on the so-called resolution rule of inference. These programs first
transform all the premises containing connectives into disjunctions, because the
resolution rule of inference works only on disjunctive premises. The rule has the
following form: p or q, r or not-q, therefore p or r (see, e.g., Robinson, 1965).
Peirce soon devised a second and superior system of “existential graphs”. He
published them in 1897, and he regarded them as his greatest contribution to
logic (see 4.394, and Lecture 3 of Peirce, 1992).

In an existential graph, or henceforth graph for short, each atomic proposition
is asserted by writing it on a sheet of paper representing the universe of
discourse, where an atomic proposition is one that does not contain negation,
connectives , or quantifiers. Thus:

Viv is in Rome Pat is in Rome

represents the conjunction  of the two atomic propositions. To represent the
negation of a proposition, it is written within a circle. Circles are typographically
inconvenient , and so where possible in the present article they are represented by
parentheses. Peirce used the same device. Hence, the following graph:

(Evelyn is in Venice ( Leslie is in Venice))

stands for an outer circle containing both the proposition Evelyn is in Venice and
an inner circle that in turn contains the proposition Leslie is in Venice. The graph
therefore depicts the following proposition:

It is the not the case that both Evelyn is in Venice and Leslie is not in Venice.

In other words, this graph depicts the proposition: If Evelyn is in Venice then
Leslie is in Venice granted an interpretation in which a conditional is true in any
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case except the one in which its antecedent Evelyn is in Venice is true and its
consequent Leslie is in Venice is false.

The graphs exploit the fact that negation and conjunction allow us to represent
any of the logical connectives. Indeed, Peirce (4.12) understood that a single
connective, equivalent to not both p and q, suffices to represent negation and all
the logical connectives. The credit for the discovery has usually gone to Sheffer
(1913). The graphs can accordingly represent any proposition based on truth-
functional connectives, i.e., connectives that form propositions that are true or
false depending solely on the truth or falsity of the propositions that they
interconnect. The logical connectives: “if-then”, “or”, and “and”, have such
idealised senses. For example, a proposition of the form:

p or q, or both

is true provided at least one of its constituent propositions (p, q) is true. Hence, a
complex proposition such as:

If p then either q and not-r or s and t

has a truth-functional interpretation, which is represented in the following graph:

( p ( q ( r ))( s t ))

The parentheses represent negating circles and the lower-case letters denote
atomic propositions.

Peirce (4.14) referred to the graphs representing sentential connectives as the
“alpha” part of the system. He added to it a way to represent quantifiers in order
to create the “beta” part, corresponding to the first-order predicate calculus. The
calculus is “first order”—the term is Peirce’s—because quantifiers range over
individuals , but not properties. The graphs use lines to represent the existence of
individuals. Each distinct individual has a corresponding line, which can split
into several branches. To represent a relation among individuals, these lines must
be linked to the predicate in the graph representing the relation. The diagram in
Figure 1, for example, has three lines that represent three entities: there is a large
cup between a small spoon and a pink saucer. As the diagram illustrates, a line to
a predicate that takes only one argument, such as is large, represents a property
of the entity that is denoted by the line. A predicate that takes two or more
arguments, such as is between, represents a relation among entities, and it is
important to link the entities to their correct position in the predicate. When a line
branches—as the line in the figure to is large and is a cup—it represents a single
entity with separate properties, i.e., an entity that is both large and a cup. Lines
identifying the existence of a relation among three individuals cannot be
constructed from graphs each containing one or two lines of existence, but
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combinations of graphs with no more than three individuals suffice to graph
every relation over more than three individuals (1.347, 4.445).

The logical force of a line in a graph is equivalent to the so-called “existential”
quantifier, which can be expressed in English by the indefinite article, a or an,
and by some, something, someone, etc. Hence, the proposition: Something is tall,
has the graph:

—is tall

And the proposition: Nothing is tall, has the graph:

(—is tall )

which is equivalent to: It is not the case that something is tall. To represent the
so-called “universal” quantifier, which is expressed by every, everything,
everyone, as in: Everything is tall, graphs exploit the equivalence illustrated by
this proposition and its paraphrase: It is not the case that something is not tall.
The universally quantified proposition: Everything is tall, is accordingly
represented by the following graph in which the line crosses into the inner circle:

( _( is tall ) )

which represents: It is not the case that something is not tall. Similarly, the graph
for: Something is tall and not thin, is:

is tall  (  is thin )

The universally quantified proposition: Everything that is tall is thin, has the
negation of the preceding graph:

Figure 1. An existential graph of a set of assertions interrelating three individuals .

is large

is a cup

is small

is a spoon

is pink

is a
saucer

 is between
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( is tall  (  is thin) )

And the proposition that: Nothing is tall and thin, has the graph:

( is tall — is thin )

Figure 2 summarises the graphs of the four main sorts of propositions containing
only a single quantifier, which occur in many sorts of inference, including the so-
called syllogisms, first systematised by Aristotle. The graphs use capital letters to
denote predicates.

The key to the interpretation of a line is that its outermost part—the one least
enclosed by circles—determines its meaning. When the outermost part of a line
is enclosed by an even number of circles, or no circles at all, it signifies the
existential quantifier, some. When it is enclosed by an odd number of circles, it
signifies the universal quantifier, every. Hence, the following graph:

( is a man   (  loves—is a woman ))

represents the proposition:

Every man loves some woman or other.

In contrast, the graph:

Figure 2. The graphs of the four main sorts of singly-quantified assertions.

A B

A B

A B

Every A is B:

Some A is B:

No A is B:

Some A is not B:

A B
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( is a man   (  loves  ))  is a woman

represents the proposition:

There is some woman whom every man loves.

Interpretation accordingly starts with all the lines that are unenclosed, next those
that are enclosed once, those that are enclosed twice, and so on. In this way,
graphs cope with what logicians refer to as the scope of quantifiers. The first of
the two preceding propositions has a universal quantifier that includes the
existential quantifier within its scope, as in the “Loglish” sentence: for every x, if
x is a man then there is some y such that y is a woman and x loves y. “Loglish” is
a language that Jeffrey (1981) invented, and that is half way between natural
language and the algebraic notation of the predicate calculus. The second of the
preceding propositions has an existential quantifier that includes the universal
quantifier within its scope: there is some y such that y is a woman and for every
x if x is man then x loves y.

In order to make inferences with graphs, Peirce (4.505) uses no axioms but
instead five rules of inference. His system is therefore a precursor to so-called
natural deduction systems, which are formalised with no axioms but only rules
of inference, and which have greatly influenced psychologists committed to
formal rules in the mind (e.g., Braine & O’Brien, 1998; Rips, 1994). Shinn
(1999) has reformulated Peirce’s rules, exploiting the symmetries in odd versus
even numbers of circles, and other visual features in the graphs. The resulting
rules produce the same transformations as Peirce’s rules, but bring together
common effects on the visual features of the graphs under the same rule. Shinn
argues that her system is more efficacious. However, the present paper outlines
Peirce’s rules (4.505–4.509) because its concern is not with an efficient tool for
reasoning, but the psychological implications of his original system.

The first rule of inference is:

1. The rule of erasure and insertion (4.505): any graph enclosed by an even
number of circles, including the case of no circles at all, can be erased; and
any new graph can be added to an area enclosed by an odd number of circles.

Erasure allows the graph:

p ( q ( r ) ), which represents: p & not both q & not r

to be transformed into:

( q ( r ) ), which represents: not both q & not r



76 JOHNSON-LAIRD

or into:

p.

It allows a line to be severed where it is evenly enclosed. Hence, the graph:

A   (  B ), which represents: Something is A & not B

can be transformed into:

A       (  B ), which represents: Something is A & something is not B

A further erasure yields:

  (  B ), which represents: Something is not B.

Erasure, in effect, allows a conjunction to be simplified into one of its
constituents. Insertion allows the graph:

( p ), which represents: not p

to be transformed into:

( p q ), which represents: not both p & q.

The rule accordingly parallels a rule for inclusive disjunctions: p, \  p or q or
both. Likewise, within an odd number of circles two separate lines can be joined.
Insertion accordingly allows the graph:

A    (      B ), which represents: Something is A & nothing is B

to be transformed into:

A    (      B )), which represents: Something is A & not B.

The second rule of inference allows for graphs to be replicated and removed:

2. The rule of iteration and deiteration  (4.506): any graph with its lines of
identity can be copied again in any area within all the circles that enclose the
original graph or within additional circles; and any graph can be erased if it
could have been the result of iteration.

Iteration allows the graph:

p ( q ), which represents: p & not q
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to be transformed into:

p p ( q ), which represents: p & p & not q

or into:

p ( p q ), which represents: p & not both p & q

or into:

p ( q q ), which represents: p & not both q & q.

What iteration does not allow is the initial graph above to be transformed into:

p q ( q ), which represents: p & q & not q.

In this case, the iterated q is outside a circle containing the original graph, q.
Iteration also allows the transformation of:

into:

One consequence of iteration is that a line can have a new branch added to it
provided that the loose end does not cross a circle, although it can abut one. This
step allows the transformation from the preceding graph to:

Another consequence of iteration allows a loose end to be drawn inwards
through circles, and then to be joined to the corresponding line in an iterated
graph. This step allows the transformation from the preceding graph to:

Iteration also allows two loose ends of the innermost parts of lines to be joined
together. Deiteration has the effect of reversing the operations of iteration, and so
all the preceding transformations can be reversed.

Rule 3 allows the assertion of premises:

3. The rule of assertion (4.507): Any graph taken to be true can be drawn with
no enclosing circles.

This rule allows each premise to be written as a graph as illustrated in
Figure 3.
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The effect of drawing two circles round a graph is equivalent to double
negation. Because a proposition such as: not not p, is equivalent to p, the fourth
rule allows double circles to be inserted or removed:

4. The rule of biclosure (4.508): Two circles can be inserted around any graph or
removed from any graph. There must be nothing between the two circles
whose significance is affected by the circles.

Biclosure allows the transformation from:

A—B

to:

A (( B ))

and back again.
The final rule allow inessential changes to graphs:

5. The rule of deformation  (4.509): any part of a graph can be deformed in any
way as long as the connections of the parts are not altered.

Table 1 summarises the five rules of inference. Peirce added various other
conditions on the rules, but their general principles should be clear. Their use can
be illustrated by showing the derivation of a simple inference (of a form known
as modus ponens):

1. p ( p ( q )), which uses the rule of assertion (rule 3) to represent the two
premises: p; if p then q.

 TABLE 1
The five rules of inference for manipulating graphs in order to derive

valid conclusions

1. Erasure and insertion: any graph enclosed by an even number of circles, or none, can be
erased; and any new graph can be added to an area enclosed by an odd number of circles.

2. Iteration and deiteration : a graph can be copied again in any area within all the circles
enclosing the original; and any graph can be erased if it could have been the result of the rule of
iteration.

3. Assertion: Any graph taken to be true can be written with no enclosing circles.
4. Biclosure: A double circle can be inserted around any graph or removed from any graph.
5. Deformation : any part of a graph can be deformed in any way as long as the connections of the

parts are not altered.
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2. ( p ( q )), using the rule of erasure (rule 1).
3. ( ( q )), using the rule of deiteration (rule 2).
4. q, using the rule of biclosure (rule 4).

Figure 3 presents another illustration of the rules in a graphical derivation of a
syllogism of the form:

All A are B.
All B are C.
Therefore, All A are C.

Peirce went on to extend the system to deal with higher-order and modal logic
(4.510), but we will not pursue these developments. With a little practice—as
Hilary Putnam remarks in his introduction to Peirce (1992)—existential graphs
are straightfoward to use. This facility is striking for a graphical system that
accommodates the whole of the first-order predicate calculus.

Figure 3. A graphical derivation of a syllogism.
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THE IMPLICATIONS FOR MENTAL REPRESENTATIONS

The purpose of most logic diagrams, such as Euler circles and Venn diagrams, is
to make reasoning easier. That was not Peirce’s aim. He wanted instead to
improve the analysis of reasoning—to take it to pieces and to reveal its
elementary steps. He took his existential graphs to be a model of “the operation
of thinking” (4.6), not necessarily conscious thinking, though consciousness, he
claimed, is a necessary part of deductive reasoning. The graphs are pertinent
to current psychological theories of reasoning. These theories are of two main
sorts. One sort postulates the use of language-like representations of propositions
and the use of formal rules (e.g., Braine & O’Brien, 1998; Rips, 1994) or
content-specific rules (e.g., Cheng & Holyoak, 1985) to manipulate these
representations. The representations resemble the syntactically structured
notations of modern logic, which can be traced back to Peirce’s algebraic
notation. The other sort of theory postulates that linguistic representations of the
meaning of propositions are used to construct mental models of the situation
under description (e.g., Johnson-Laird & Byrne, 1991). Reasoning is based on
these representations, which can be traced back to Peirce’s graphs. They have
implications , which this section considers, both for models and for mental
representations in general.

The first implication concerns the structure of Peirce’s diagrams. He
distinguished three properties of signs in general, which included thoughts (e.g.,
4.447). They could be icons, such as visual images that represent entities in
virtue of structural similarity; indices, such as an act of pointing, that represent
entities in virtue of a direct physical connexion; and symbols, such as verbal
desciptions , which represent entities in virtue of a conventional rule or habit.
These properties can co-exist, and so a photograph is both iconic and indexical.
Peirce argued that diagrams should be as iconic as possible (4.433). He meant
that there should be a visible analogy between a graph and what it represents: the
parts of the diagram should be interrelated in the same way that the entities that it
represents are interrelated (3.362, 4.418, 5.73). Hence, the existential graphs are
more iconic than the entitative graphs (4.434). This feature of iconicity is of
fundamental importance to mental representations. It is central to the theory of
mental models: “A natural model of discourse has a structure that corresponds
directly to the structure of the state of affairs that the discourse describes”
(Johnson-Laird , 1983, p. 125). Early formulations of iconicity were Maxwell’s
(1910) analysis of diagrams and Wittgenstein’s (1922) “picture” theory of
meaning, with its key proposition 2.15: “That the elements of the picture are
combined with one another in a definite way, represents that the things [in the
world] are so combined with one another.” Peirce anticipates both Maxwell and
Wittgenstein. His concept of an iconic representation contrasts, as he recognised,
with the syntactical symbols of language.

The second implication of the graphs derives from their iconic nature. As
Peirce argued (2.279, 4.530), the inspection of a graph reveals truths to be
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discerned over and above those of the propositions that were used in its
construction. In an ideal system, the logical consequences of a set of premises
can be “read off” from the representation of the premises. Mental models of
spatial and temporal relations have exactly this characteristic (Johnson-Laird,
1983, p. 136). That is to say, their logical consequences are emergent properties
of representations. For example, the propositions:

The circle is to the right of the triangle.
The triangle is to the right of the square.

support the following model (Johnson-Laird & Byrne, 1991):

[ & ~*]

where the square brackets indicate a model that is accessible in terms of spatial
co-ordinates. The model yields the conclusion that The circle is to the right of the
square, which is valid because it holds in all the models—in this case the single
model—that satisfy the premises. Yet this conclusion was not a proposition used
in the construction of the model. Moreover, there is no need for an axiom or
meaning postulate to capture the transitivity of a relation such as: to the right of.
The meaning of the relation, which is used to construct and to interpret models,
suffices for the inference. This characteristic of spatial and temporal models has
been implemented in computer programs (Johnson-Laird, & Byrne, 1991;
Schaeken, Johnson-Laird, & d’Ydewalle, 1996).

Discourse about a domain that does not seem to be iconic can be represented
in models from which logical consequences emerge. For example, the following
inference depends on an abstract relation:

Pat likes all cars.
That is a car.
Hence, Pat likes it.

Yet, if the model theory is right, individuals make this inference by constructing
a model of the premises that has the following structure:

where the arrow represents the relation of liking. The conclusion that Pat likes
the car (referred to by “that”) can be read off from this model. Such a model is
only a step away from the corresponding existential graph of the two premises:
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( ( Pat      likes    )    is a car ) that      is a car

This example illustrates an important difference between mental models and
graphs. Mental models represent a set of entities using a corresponding set of
mental tokens of their predicates, whereas graphs do not. The number of tokens
in a mental model is small, but arbitrary—as reasoners similarly assume when
they construct external models (Bucciarelli & Johnson-Laird, 1999). The
diagram of the mental model just given uses words, but that does not imply that
models are made up of words. It is important to bear in the mind the distinction
between the diagram and what it purports to represent, namely, a model in the
mind. You understand, for instance, what it means for a person to like all cars.
Your understanding can be represented in your mind in a way that is independent
of your language. Indeed, if such a thought comes to you, it may not always be
easy to put it into words. Moreover, if you are bilingual and speak, say, both
English and Italian, then you are liable to build the same mental model from the
corresponding assertion in Italian.

Can the logical consequences of all propositions be modelled in an emergent
way? No one knows. An apparent counterexample is based on the following sort
of premises:

Imagine a world of mirrors in which there are three persons: Pat, Viv, and Les, and
in which everyone can see anyone who can see someone. Pat can see Viv. What
follows?

Few people can grasp at once the consequences. What seems to happen is that
reasoners construct a sequence of models, which starts with the following model
of the categorical premise:

where “p” represents Pat, “v” represents Viv, “l” represents Les, and the arrow
represents the relation of seeing. As Pat can see someone, reasoners can use the
universal premise to update the model to:

This model yields the conclusion that everyone can see Pat. So, everyone can see
someone, and the universal premise can be used once more to update the model:

2. p v 1

1. p v 1
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This model yields the final conclusion that everyone can see everyone, including
themselves. Perhaps a super-intelligence could leap immediately to this valid
conclusion. For human reasoners, however, it seems that the universal premise
must be repeatedly used to update the current model until the process can go no
further. This claim was corroborated in an unpublished study carried out by
Paolo Cherubini and the author.

The third implication of graphs contrasts with the “possible worlds” that
logicians invoke to cope with the semantics of formal languages (e.g. Kripke,
1963). A possible world corresponds to a complete description of a world, and so
a proposition divides the infinite set of possible worlds, which includes the real
world, into two: those worlds in which the proposition is true and those worlds in
which it is false. This division captures the meaning of the proposition. Possible
worlds are at the heart of both the semantics of modal logic, and, some claim, the
semantics of natural language. As a psychological theory, however, they are
implausible because when you understand a proposition such as:

The circle is to the right of the triangle

your mind cannot hold the infinite set of possible worlds in which the proposition
is true (Partee, 1979). These worlds vary in such matters as the distant apart of
the two shapes, their sizes, colours, and so on. But, as Peirce realised, a graph is
analogous to what it represents “differing from the objects themselves in being
stripped of accidents”. The graph represents just those characteristics of the
objects that bear on reasoning (4.233). Similarly, the late Jon Barwise (1993)
pointed out that a mental model captures what is common to all the different
ways in which a possibility might occur. Hence, a mental model of the spatial
proposition just given represents what is common to any situation in which a
circle is to the right of a triangle, but it represents nothing about size, colour,
distance apart, and other such “accidents”. The model can be updated to take into
account information about these properties and relations. But no matter how
many details are added to a description, it is always consistent with many distinct
states of affairs.

The graphs have implications for a matter under debate: are any mental
representations amodal, i.e., not in any sensory modality? Markman and Dietrich
(2000, p. 472) write: “Theoretical arguments and experimental evidence suggest
that cognitive science should eschew amodal representations.” This view has

3. p v 1
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much to commend it. In the past, theorists may have resorted to amodal
representations too quickly and underestimated the power of perceptual
representations (see Barsalou, 1999, for a similar case). But, as we will see, the
moral of Peirce’s graphs is that not everything can be represented in an iconic
way, and hence there remains a need for amodal representations. Certainly, you
can have an iconic representation of a circle to the right of a triangle: you can
have a visual image of their spatial arrangement. But, even if we put to one side
the question of abstract predicates, there remain at least two elements of meaning
that cannot be iconic. The next two implications of the graphs concern them.

The fourth implication of the graphs is that you cannot have an iconic
representation of negation. Hence, no visual image can capture the content of a
negative assertion, such as:

The circle is not to the right of the triangle.

You might form a visual image, say, of a large red cross superimposed on your
image of the circle to the right of the triangle. But you have to know that the
function of the red cross is to symbolise negation, and you have to know the
semantics of negation—that it reverses the truth value of the corresponding un-
negated assertion. And you cannot have a visual image, or any other sort of
perceptual representation, that captures either the function of the symbol or its
semantics (see Wittgenstein, 1953). Negation cannot be perceived. Hence, the
use of circles to represent negation in graphs cannot be perceived. You must
know that circles signify negation: you cannot perceive this fact merely by
inspecting graphs. Likewise, to interpret graphs you must know the semantics of
negation: you cannot perceive this semantics merely by inspecting the graphs.
Graphs are not pure icons, but hybrid representations containing what Peirce
called symbolic elements (see Newell, 1990).

One putative defence of the perception of negation is that one envisages a
contrast class. Given the assertion, say:

I did not travel to Manchester by bike

reasoners infer that I travelled there by some other appropriate mode of transport.
Likewise, given:

The circle is not to the right of the triangle.

one might envisage a specific contrast case of the circle to the left of the triangle.
Individuals do indeed envisage such cases on the basis of the meaning of
assertions and their general knowledge (see, e.g., Oaksford & Chater, 1994;
Oaksford & Stenning, 1994; Schroyens, Schaeken, & d’Ydewalle, 2001). But
the only way in which such classes can capture the full meaning of the negative is
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if one envisages all the alternative possibilities, e.g., all the possible modes of
transport other than by bike by which the speaker might have travelled to
Manchester. When the negated term is binary, then there is just a single
possibility , e.g., if the door is not open then it is closed. Otherwise, it is necessary
to envisage a set of disjunctive possibilities. But, as we will see, such a set itself
calls for an amodal representation.

Like graphs, mental models therefore use a symbol to designate negation.
Given a simple affirmative assertion, such as:

The circle is to the right of the triangle.

individuals can construct a mental model of the spatial arrangement between the
two objects. The model captures what is common to all the different ways in
which the possibility might be realised. Given the corresponding negative
assertion:

The circle is not to the right of the triangle

as we have seen, there is a disjunction of different contrast classes in which the
assertion would be true. In one class, the circle is above the triangle; in another
class, the circle is to the left of the triangle; and so on. Each of these different
classes can in turn be realised in infinitely many ways. The theory, however,
postulates that individuals can capture all the different classes using negation as
an operator on a model:

¬ [ ~ * ]

where “¬” denotes negation. Individuals have the option of imagining the
different classes of possibilities that would be instances of this negated model.
That is, they can construct a model of the circle above the triangle, a model of the
circle to the left of the triangle, and so on. But they are only likely to use this
strategy when a binary meaning or knowledge yields a single possibility. The
falsity of a negative assertion, such as:

The circle is not to the right of the triangle

is compatible with the only possibility represented in the model of the un-
negated proposition. Hence, with true assertions, simple affirmatives are
compatible with one class of possibilities and their negations are compatible with
many classes of possibilities; whereas with false assertions, simple affirmatives
are compatible with many classes of possibilities and their negations are
compatible with one class of possibilities. This pattern may account for the well-
established interaction in the verification of assertions: people are faster to
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evaluate true affirmatives than false affirmatives, but faster to evaluate false
negatives than true negatives (see, e.g., Clark & Chase, 1972; Wason, 1959).

The fifth implication of the graphs concerns disjunctive possibilities, and the
need for their symbolic rather than iconic representation. Peirce abandoned his
first system of “entitative” graphs because it treated separate assertions written in
a graph as disjunctive alternatives. Thus, the graph:

Viv is in Rome Pat is in Rome

represents the disjunction: Viv is in Rome or Pat is in Rome, or both. To
represent a conjunction in this system it is necessary to use negating circles:

( ( Viv is in Rome ) ( Pat is in Rome ) )

The graph represents: It is not the case that Viv is not in Rome or Pat is not in
Rome, i.e., Viv is in Rome and Pat is in Rome. Peirce argued that his second
system of “existential” graphs was more iconic because it treated separate
assertions in a graph as conjunctions. But, to represent a disjunction in this
system, it is necessary to use negating circles:

( ( Viv is in Rome ) ( Pat is in Rome ) )

which represents: It is not the case both that Viv is not in Rome and that Pat is not
in Rome. As Peirce realised, there is a one-to-one relation between his two
systems: entitative graphs take disjunctions as fundamental, whereas existential
graphs take conjunction as fundamental. One passes from one system to the other
by way of the following equivalences between conjunctions and inclusive
disjunctions:

A & B º  not (not-A or not-B)
A or B º  not (not-A & not-B)

In fact, both systems rely on a convention: you cannot perceive which system of
graphs you are looking at. There is no perceptual or iconic system for the
representation of disjunctive possibilities. They call for an amodal system of
representation.

Mental models contrast with both of Peirce’s graphical systems. The evidence
suggests that logically naïve individuals represent a disjunction such as: Viv is in
Rome or Pat is in Rome or both, by considering each of its possibilities
separately. That is, they construct three mental models representing these
possibilities:

Viv is in Rome
Pat is in Rome

Viv is in Rome Pat is in Rome
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Each row in this diagram represents a separate model of a possibility, and the
clauses in the premises are represented in a model only when they are true in the
corresponding possibility. The theory accordingly takes possibilities as
primitive, and each mental model represents a possibility, which is treated as a
conjunction of individuals, their properties, and interrelations. Hence, a set of
mental models represents a disjunction of possibilities. In other words, entitative
graphs take negation and disjunction as primitive, existential graphs take
negation and conjunction as primitive, and mental models take all three—
negation, conjunction, and disjunction—as primitive. The evidence supports the
model theory: people understand disjunctions by representing alternative
possibilities (e.g., Johnson-Laird & Byrne, 1991).

Both models and graphs are computationally intractable in the technical sense
(see Cook, 1971). That is, reasoning makes bigger and bigger demands on time
and memory as the number of distinct constituent propositions in an inference
increases. These constituents are atomic propositions, which contain neither
negation nor sentential connectives. The computational demands can increase so
that no system can yield a result, not even a computer as big as the universe
running at the speed of light. A set of, say, 100 atomic propositions allows for
2100 possibilities , which is a vast number, and in the worst case a test of a
deduction calls for check of the truth or falsity of all of them. If one possibility
could be checked in a millionth of a second, it would still take over 40 thousand
million million years to examine them all. As long as a system is rich enough to
reason with sentential connectives, no way round this barrier to efficient
computation exists—excluding some as yet undiscovered magical effect in a
hypothetical quantum computer. Systems in artificial intelligence have been
proposed that give up the expressive power of sentential reasoning in favour of
computational tractability, but they must eschew negation, disjunction, and
existential quantifiers (Levesque, 1986), that is, precisely those elements that are
not iconic. This price is too high for a plausible psychological theory of
reasoning.

THE IMPLICATIONS FOR ELEMENTARY
OPERATIONS OF THE MIND

What are the fundamental operations of thought? The question is worth raising
because Peirce believed that existential graphs provide the answer, and because
recent psychologists have sought an answer to it too (e.g. Rips, 1994). Of course,
the notion that thought can be decomposed into operations is not accepted by
everyone. However, it seems plausible. And if thinking is based on fundamental
operations, then it is analogous to computation. The theory of computability
reveals distinct ways to construct the set of computable functions. These distinct
ways are based on different fundamental operations, and yet the systems turn out
to be equivalent to one another in what they can compute. For instance, the
apparatus of Turing machines—reading and writing symbols on a tape, and
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shifting the tape and the state of the machine—yields infinitely many
computable functions. The theory of recursive functions shows that a small
number of different functions and a small number of different ways of
combining them are sufficient to compute anything that is Turing-machine
computable. Yet another set of fundamental operations—those that underlie an
unrestricted transformational grammar—can also compute anything that is
Turing-machine computable. The operations of a Turing machine can in turn be
expressed in the first-order predicate calculus. Indeed, in this way, one can prove
that no general procedure can exist in the calculus for determining the invalidity
of an inference (see Boolos & Jeffrey, 1989). The critical question is: which of
these various systems corresponds most closely to the fundamental operations of
reasoning? This section of the paper accordingly examines Peirce’s answer and
the answer from recent accounts of the psychology of reasoning.

In standard accounts of the predicate calculus, proofs depend on three stages:
the substitution of the names of real or hypothetical individuals in place of
quantified variables, the use of rules of inference for sentential connectives to
derive conclusions about the resulting propositions, and finally the restoration of
quantifiers in them. As an example, consider the derivation of the following
inference:

Every mother has a child.
Elizabeth is a mother.
Therefore, Elizabeth has a child.

In Loglish, the inference is as follows:

1. For every x, if x is a mother then there is some y such that y is a child of x.
2. Elizabeth is a mother.

Therefore, there is some y such that y is a child of Elizabeth.

The first stage is to eliminate the quantifiers, that is, to instantiate them by
replacing them with names. The universal quantifier ranges over everyone in the
universe of discourse, and so we can replace it in the first premise with
“Elizabeth”:

3. If Elizabeth is a mother then there is some y such that y is a child of Elizabeth
[from line 1, using a rule for universal instantiation].

A similar rule allows us to replace the existential quantifier, although we
must be careful about the temporary name of the hypothetical individual
that we substitute for it. This name should not have occurred already in the
inference.
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Hence, we rewrite the previous line as:

4. If Elizabeth is a mother then Charles is a child of Elizabeth. [from line 3, using
a rule for existential instantiation, where “Charles” is the temporary name].

We have now eliminated the quantifiers from the premises, and can proceed to
the second stage of reasoning based on sentential connectives:

5. Charles is a child of Elizabeth [from lines 2 and 4, using the rule of modus
ponens: if p then q; p; therefore, q].

The third and final stage is to restore quantifiers, using rules of generalisation.
Because “Charles” is a temporary name instantiating an existential quantifier, we
must restore an existential quantifier:

6. There is some z such that z is a child of Elizabeth.

This assertion is the required Loglish conclusion corresponding to: Elizabeth has
a child.

In some psychological theories, the three stages are collapsed into one by
rules of inference that take quantified premises and deliver quantified
conclusions directly (see Braine & O’Brien, 1998). But this idea will not work
for many deductions, because they call for a series of deductive steps in the
second stage, after the elimination of quantifiers. The rules in Braine’s system
are accordingly incomplete in that they fail to account for many valid deductions
that individuals are able to make.

Rips (1994) has pointed out that the number of possible instantiations is an
exponential function of the number of variables, and so proofs soon become
intractable. He hoped to minimise these problems by eschewing an explicit
representation of quantifiers (p. 186). In his system, which is known as
PSYCOP, the work of quantifiers is carried out by names and variables in a way
akin to certain automated theorem provers in artificial intelligence. For example,
PSYCOP represents the sentence:

Every mother has a child

in the following way:

IF Mother(x) THEN Child-of(ax, x)

where “x” stands for a universally quantified variable, and “ax” stands for a
temporary name with a value dependent on the value of x (i.e. a so-called Skolem
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function). In addition to variables and temporary names, Rips allows for
permanent names, such as “Elizabeth” in the example. He describes the elaborate
transformations needed to get from the usual algebraic notation of the predicate
calculus to his quantifier-free representations, but suggests that there may be a
more direct route to them from sentences in natural language (1994, p. 94). He
then introduces four rules for matching one sentence to another in his quantifier-
free notation. These rules make reference to an important distinction in PSYCOP
between sentences in a derivation, i.e., premises or conclusions derived from
them, and subgoals, which PSYCOP sets up in trying to prove a given
conclusion. The four rules are as follows:

1. A variable, x, in a subgoal can match another, y, in a sentence, where both x
and y derive from universally quantified variables, because logic is not
affected by the particular variable representing a universal quantifier.

2. A temporary name in a subgoal can match a temporary or permanent name in
a sentence.

3. A permanent name in a subgoal can match a variable in a sentence, i.e., if a
sentence applies to all entities in the universe of discourse then it applies to the
particular individual in a subgoal.

4. A temporary name in a subgoal can match a variable in a sentence.

These rules are formulated with constraints to prevent invalid inferences. But
there is no rule to match a name (permanent or temporary) in a sentence to a
variable, x, in another sentence. Hence, the rules do not suffice to draw the
conclusion:

Elizabeth has a child

in the example just given. The problem with the required matching rule is that it
could lead to a futile sequence of steps ad infinitum (Rips, 1994, p. 193). Hence,
the inference can be made only by guessing the conclusion, setting up a subgoal
to prove it, and then using rule 3 to make the required step. Rips proves that his
system does not lead to invalid conclusions. But it is incomplete in that there are
valid inferences that cannot be derived within it. Despite its motivation, the
quantifier-free notation does not lead to a computationally tractable system.
Studies of automated theorem proving have shown that the problem of
intractability re-emerges elsewhere (in the number of different possible uses of a
rule of inference). Intractability is inevitable in any complete system for
reasoning based on sentential connectives (Cook, 1971). Indeed, human
inferential ability rapidly collapses as inferences depend on an increasing
number of atomic propositions.

Like the algebraic notation for the predicate calculus, the preceding formal
rule theories rely on variables. Substitution of a value for a variable is therefore a
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potential candidate for a fundamental operation in the process of reasoning. If
Peirce is right, however, there is no such fundamental operation. His graphs
make no use of variables. They represent individuals as lines in graphs—a
representation that Sowa (1997) has argued is more natural. Peirce therefore
argued that only two operations are fundamental in reasoning: insertion and
deletion (4.374). As Table 1 shows, the rules of inference for graphs insert
something into a graph (the rule of insertion and the rule of iteration), or delete
something from a graph (the rule of erasure and the rule of deiteration), or both
(the rule for double circles).

Mental models are similar to Peirce’s graphs. They too contain no variables,
and therefore require no substitution of values for variables. The fundamental
operations of reasoning based on mental models are insertion (the addition of
entities, properties, or relations to models), and deletion (the elimination of
models when they are combined with other, inconsistent, models). In the case of
reasoning based on quantifiers, the theory also proposes that individuals search
for alternative models. In modelling this search in a computer program (see
Bucciarelli & Johnson-Laird, 1999), the program refutes conclusions by
constructing counterexamples, i.e., alternative models of the premises in which
the conclusion is false. To construct counterexamples, the program uses the
insertion of new entities into models, and two further fundamental operations—
breaking the representation of a single entity into two, and joining the
representations of two separate entities into one. The first operation applies to
models that contain, for instance, an entity of the form:

artist beekeeper chemist

which represents a single individual satisfying the three predicates. Provided that
the operation does not violate the meaning of the premises, the representation
can be broken into two:

artist beekeeper
beekeeper chemist

The result represents two separate individuals, one an artist and beekeeper and
the other a beekeeper and chemist. This operation refutes, for instance, the
following invalid inference:

Some artists are beekeepers.
Some beekeepers are chemists.
Therefore, some artists are chemists.

The operation of joining two individuals into one, in essence, reverses the
previous step, although the circumstances of its use can be different. These two
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operations run in parallel with Peirce’s system. Given the following graph, which
corresponds to Something is A, B, and C:

the rule of iteration allows the transformation to:

Successive applications of the rule of erasure then allow the following sequence
of transformations:

The result (Something is A and B, and something is B and C) is the same as the
operation on the mental model. The difference between the operations on graphs
and models concerns their constraints, because the two systems differ in how
they represent sets of entities.

There are major discrepancies between the computer program implementing
the model theory and human performance in constructing external models, e.g.,
the program uses only a single strategy, whereas humans use a variety of
strategies. However, the program’s fundamental operations for constructing
models and counterexamples turn out to be remarkably similar to those used by
the participants. A major resemblance is that both the program and human
reasoners tend to construct initial models that satisfy both the premises and the
conclusion. After this step, reasoners refute an invalid conclusion by carrying out
one of the following operations: they create a new individual by inserting a new
token, they break a token of an existing individual into two, and they join tokens
of two separate individuals into one.

CONCLUSIONS

Peirce’s existential graphs are remarkable. They establish the feasibility of a
diagrammatic system of reasoning equivalent to the first-order predicate
calculus. They are therefore a precursor to recent systems of diagrammatic
reasoning (see, e.g., Barwise & Etchemendy, 1992). Peirce, however, took pride
not in the pedagogical applications of the graphs but in the way they illuminated
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the mental processes of reasoning. They anticipate the theory of mental models
in many respects, including their iconic and symbolic components, their
eschewal of variables, and their fundamental operations of insertion and
deletion. Much is known about the psychology of reasoning (see, e.g., Evans,
Newstead, & Byrne, 1993). But we still lack a comprehensive account of how
individuals represent multiply-quantified assertions, and so the graphs may
provide a guide to the future development of psychological theory.
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