1 The shape of problems
Philip N. Johnson-Laird

Tutta [a teoria del problem-solving, da Simon ai giorni nostti, pud venire
considerata come uno sviluppo diretto o indiretto dei lavori dei gestaltisti. [All
theories of problem solving from Simon to the present day can be considered
as a development, direct or indirect, of the work of the Gestalt psychologists.]

{Paolo Legrenzi, 1978, p. 173)

Introduction

Psychology in [taly during the twentieth century was unique. Vittoric Benussi
(1878-1927) initiated an Italian variety of Gestalt psychology, deriving
more from Meinong than the great German school; Cesare Musatti (1899
1979) continued the tradition; and Gaetano Kanizsa (1913-1993) brought it
to fruition in his startling and original demonstrations of perceptual phe-
nomena, especially llusory contours. Paolo Legrenzi is a crucial figure in
this history, because he built the bridge from Gestalt theory in his collabor-
ations with Kanizsa to information-processing psychology (see, e.g., Kan-
izsa & Legrenzi, 1978; Kanizsa, Legrenzi, & Sonino, 1983). As the epigraph
to the present chapter shows, he has never lost sight of the Gestalt origins
in the study of thinking. For over 30 years, he and T have carried ont
research together, usually in collaboration with his wife Maria Sonino, and
mostly on deductive reasoning. He is thus both a colleague and a dear
friend. In this chapter, my aim is to honour him with an analysis of human
problem solving, a topic that goes back to some of his own studies
(e.g.. Legrenzi, 1994) and to those of his Gestalt forebears (e.g., Duncker,
1945, Katona, 1940; Kohler, 1925; Luchins, 1942; Maier, 1931; Wertheimer,
1945/1959),

A commeon phenomenon when you are struggling to solve a problem is that
you have a burst of inspiration - an insighs — and the solution suddenly
emerges Into your consciousness, seemingly from nowhere. “Eureka,” you
say, like Archimedes: “I have it”. Though you do not normally leap from your
bath and run stark naked through the streets, shouting the solution to the
world. The experience seems very different from the normal process of
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thought in which you advance step by step towards the solution of a problem,
as, say, when you work out your income tax returns. Indeed, the Gestalt
psychologists assumed that insight was special. It is a creative process, they
argued, that depends on a sudden restructuring (Umstruktuierung) or recen-
tring (Umzentrierung) of the perceptual field (see Kohler, 1929/1947;
Wertheimer, 1945/1959). But critics both early (Bulbrook, 1932) and late (e.g.,
Perkins, 1981; Weisberg, 1986), have argued that there is nothing special
about insight. Normal thinking is analogous to a scarch for the number that
opens a combination lock. When at length you stumble on to the solution, it
is bound to be sudden, but it does not depend on any processes that differ
from those that hitherto failed.

An empirical discovery about problem solving contrasts with such claims.
Janet Metcalfe and her colleagues asked participants in an experiment to rate
how “warm” they were in their efforts to solve problems (see, e.g., Metcalfe &
Weibe, 1987). With some problems, the participants made progress towards
the solution, as shown in the increase in their ratings of warmth. But, with
other problems — those typically used in studies of insight, there was no
increase in ratings of warmth: Individuals felt remote from the solution right
up to the moment that it popped into their heads. When the ratings of
warmth did grow incrementally for insight problems, they tended to presage a
failure to solve the problem. Hence, some problems are solved in a sudden
and uncxpected way. These solutions, we shall say, depend on insight. The
question is what are its underlying mental processes?

The short answer is: no one knows. There are, however, three main
schools of thought. The first view is the Gestalt account of insight as
dependent on restructuring or recentring. The trouble is that these notions
are obscure (Ohlsson, 1984a, 1984b): no computer model implementing
them exists.

The second school of thought is that insight depends on overcoming an
erroneous approach to a problem (see, e.g., Isaak & Just, 1995; Knoblich,
Ohlsson, Haider, & Rhenius, 1999; Weisberg, 1993). Individuals become fix-
ated on inappropriate methods based on their prior experience, but a period
of “incubation” in which they think about other matters allows the misleading
cues o become less accessible with a consequent greater chance of recovering
the correct cues (Smith & Blankenship, 1991). Such perseverations certainly
occur, e.g., designers tend to conform to any initial example that they are
given, incorporating its features into their finished designs even when they
are asked not to (Jansson & Smith, 1991). The trouble with this approach,
however, is its assumption that individuals know the right methods, though
cannot access them. The claim may be correct for some problems (see Keane,
1989), but it is false for others. Arguments to the contrary resemble Socrates’
leading questions to a slave boy to show that he knew the solution to a
geometric problem (see Plato’s Meno). In fact, a major theme of the present
chapter is that attcmpts to solve a problem can lead to the creative discovery
of knowledge.
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The third school of thought is based on Newell and Simon’s (1972) con-
cept of a “problem space”, which is defined as all possible sequences of the
mental operations pertinent to the solution of a problem. The problem solver
needs to search this space for a sequence of operations leading from the
initial state of the problem to its goat. Kaplan and Simon (1990) extended
this idea to insight. They argued that it depends on switching from a search in
the problem space to a search in the meta-level space of possible problem
spaces for a new representation of the problem (see also Korf, 1980). In a case
of insight, this new representation yields the solution to the problem. For
example, most people are at first defeated by the problem of the “mutilated”
chessboard. The goal is to cover a chessboard with dominoes, or else to prove
that the task is impossible. Each domino is in the shape of a rectangle that
covers two adjacent squares on the chessboard. However, the board has been
mutilated by the removal of a square at one corner and another square at the
diagonally opposite corner. Individuals who imagine laying out dominoes on
the board get nowhere. They have the wrong representation of the problem.
The key insight depends on constructing a new representation, which con-
cerns parity: Bach domino covers one white square and one black square, but
the diagonally opposite corners are of the same color. Hence, after they are
removed, the remainder do not include an equal number of black and white
squares, and so the task is impossible.

Tom Ormerod and his colieagues have formulated an alternative account
of insight (see, e.g., Chronicle, Ormerod, & MacGregor, 2001; MacGregor,
Ormerod, & Chronicle, 2001; Ormerod, MacGregor, & Chronicle, 2002).
They argue that when individuals tackle a problem, they select moves to
maximise progress towards a hypothesised goal but to minimise the expan-
sion of the problem space. They relax this constraint only if they have to, but
in this way they may discover a new sort of move. This theory postulates that
problem solvers can assess whether a putative move does make progress
towards a goal, and so they can rely on a “hill-climbing” strategy. The
assumption is plausible for certain problems, but perhaps less plausible for
others, such as those problems in daily life that call for insight (or those
discussed towards the end of this chapter).

The problem with “problem spaces” is that they are irrefutable. Any com-
putable process can be described as a search through a space of possible
sequences of operations. At the limit, of course, there is no search at all,
because the process follows a deterministic sequence of operations. This
limit, however, is merely a special case. To characterise insight as a search
through possible problem spaces is highly abstract. As Kaplan and Simon
remark (1990, p. 381): “The space of possible problem spaces is exceedingly
ill-defined, in fact, infinite.”” What we need is an account of how the mind
carries out the search.

In sum, all three schools of thought contain clements of the truth, but
none is wholly satisfactory. The present chapter accordingly outlines a new
theory of creative problem solving. It begins with an analysis of creativity
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and an exhaustive set of possible creative strategies. It describes a test bed for
the new theory — a domain of “shape” problems — and a process of creative
discovery depending on explorations of possible operations in tackling these
problems. This process enables individuals to develop strategies for problem
solving. Tt can also lead to insights that overcome the failure of an initial
strategy. Finally, the chapter draws some conclusions about the nature of
problem solving.

The nature of creativity

Insight is creative, and so to understand it we need to understand how the
mind creates. But what is creativity? Science does not advance by a priori
definitions, but elsewhere I have offered a working definition of creativity
(see. e.g., Johnson-Laird, 2002). This definition depends on five main
assumptions:

(1) Noveity: the result of a creative process is novel for the individual who
carries out the process. Creativity is not mere imitation or regurgitation.

(2) Optional novelty for society: the result may also be novel for society as a
whole, but this requirement is optional. The mental processes underlying
creativity are the same even if unbeknownst to the relevant individual
someone else has already had the same idea.

(3} Nondeterminism: creativity depends on more than mere calculation or the
execution of a deterministic process, such as long multiplication. When
you create something, such as the solution to a problem, alternative pos-
sibilities can occur at various points in the process. If you could relive
your experience with no knowledge of your first etfort, then you might
make different choices the second time around. Hence, creation does not
unwind like clockwork with only one option for you at each point in the
process. In compuitational theory, a machine with this property is known
as nondeterministic. 1t can yield different outcomes when it is in the
same internal state, and has the same input if any (see, e.g., Hoperoft &
Uliman, 1979). No one knows whether human creativity is truly non-
deterministic, but at present we have to make this assumption. It allows
tor our ignorance and, computationally speaking, it costs us nothing. In
principle, anything that can be computed nondeterministicaily can also
be computed deterministically,

(4) Constraints: creativity satisfies pre-existing constraints or criteria. For a
problem in science, art, or daily life, a crucial constraint is that the solu-
tion works, i.e., it is viable. There are usually many other constraints on
the operations, physical or mental, that are pertinent to the problem. The
aesthetic values of a genre constrain the creation of works of art: a
knowledge of robust results constrains the creation of scientific theories;
and an awareness of practical realities constrains the creation of sol-
tions to everyday problems, The individual creator is not a closed system,
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but is influenced by mentors, collaborators, and leaders (Simonton,
1984). In this way, the values of a culture influence individuals’ creative
processes, which, in turn, may contribute to the values that are passed on
to the next generation.

(5) Existing elements: you cannot create out of nothing. There must be
existing elements to provide the raw materials for even highly original
works of art or science. These existing elements include, of course, the
system of mental processes that allow creativity to occur.

Novelty, Optional novelty for society, Nondeterminism, Constraints, and
Existing elements are the five components of the NONCE definition of cre-
ativity. The definition has an unexpected consequence. On the assumption
that creativity is a computable process, there can be only three sorts of cre-
ative sirategy. A strategy is a systematic sequence of elementary steps that an
individual follows in solving a problem, and is therefore similar to a computer
algorithm for solving a problem.

The first sort of strategy is neo-Darwinian. It 1s analogous to the evolution
of species according to the neo-Darwinian synthesis of genetics and natural
selection. The strategy has two stages: a generative stage in which ideas are
formed by an entirely arbitrary or nondeterministic process working on exist-
ing elements; an evaluative stage that uses constraints 1o pass just those results
that are viable (see Figure 1.1, p. 8). Whatever survives evaluation, which
may be little or nothing, can serve as the input to the generative stage again.
The process can thus be repeated ad libitum with the output from one iteration
serving as the input to the next. Neo-Darwinist theories of creativity include
accounts based on trial and error, and they have often been proposed by
psychologists (e.g., Bateson, 1979; Campbell, 1960; Simonton, 1995, Skinner,
1953). An individual produces a variety of responses, and the contingencies
of reinforcement, or some other constraints, select those that are viable
and eliminate the remainder. It is crucial to distinguish between a single
operation of a neo-Darwinian strategy and its iterative or repeated use, which
is much more powerful (Dawkins, 1976). Evolution is thus an archetypal
recursive process: It applies to its own successful results. 1t is mimicked in the
“genetic algorithms™ developed by Holland and his colleagues for finding
optimal solutions to problems (e.g., Holland, Holyoak, Nisbett, & Thagard,
1986).

A neo-Darwinian strategy is grossly inefficient, but the only feasible strat-
egy if the penerative process cannot be guided by constraints, as in the case of
the evolution of species (see Mayr, 1982, p. 537). Yet, if constraints are used
in the evaluation of ideas, then they could be used instead to constrain their
generation in the first place. Unlike species, ideas could evolve using this
process. The second sort of strategy is neo-Lamarckian in just this way (see
Figure 1.1, p. 8). All the constraints acquired from experience govern the
generative stage — by analogy with Larmarck’s theory of evolution (see
Mayr, 1982, p. 354). If an individual has acquired a comprehensive set of
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Figure 1.1 The three strategies for creativity

constraints guaranteeing the viability of the results, then the generative stage
will yield a small number of possibilities, all of which meet the constraints.
But because all the constraints are used to generate a result, by definition
none are left over for its evaluation. The constraints will sometimes allow
more than one possibility, and so the only way to choose amongst them must
be nondeterministic, e.g., by making an arbitrary decision. The strategy has
just two stages with no need for recursion: {1) the generation of possibilities
according to constraints; (2) an arbitrary selection, where necessary, from
amongst them. The strategy is highly efficient, because it never yields
hopeless results and never calls for recursion.

The third sort of strategy is a compromise. It is multistage: The generative
stage uses some constraints like a neo-Lamarckian strategy, and the evalu-
ative stage uses some constraints like a neo-Darwinian strategy (see Figure
1.1}. The initial generation of possibilities under the guidance of some con-
straints may Jeave something to be desired, and so the individual applies



1. The shape of problems 9

further constraints to evaluate the results. They may need further work, and
so the process can be recursive,

Figure 1.1 summarises the three strategies. Many creative individuals do
indeed repeatedly revise the results of their earlier efforts. Since they are apply-
ing constraints at each stage, why do they not apply all of these constraints
immediately in the first generative stage? Why the need for a time-consuming
division of labour over several recursions? From a computational standpoint,
it would be more efficient to apply all the constraints in the generative stage in
a neo-Lamarckian way. It seemns paradoxical for individuals to waste time
making an inadequate attempt if they have the ability to perceive its
inadequacy and to set matters right. The resolution of the paradox may lie in
the way the mind works. Knowledge for generating ideas is largely
unconscious, whereas knowledge for evaluating ideas is largely conscious and
embodied in beliefs. This dissoctation resolves another puzzle, which Perkins
(1981, p. 128) refers to as the fundamental paradox of creativity: People are
better cntics than creators. Criticism can be based on conscious knowledge
that can be acquired ecasily; whereas the generation of ideas 1s based on
unconscious knowledge acquired only by laborious practice in creating.
Hence there are two stages in many sorts of creation: a generative stage and an
evaluative stage. Hence the greater ease of criticism over imagination. In cre-
ation, no substitute exists for a period of apprenticeship. You learn by emulat-
ing successful creators, and by trying to create for yourself in a particular
domain. Only in this way can you acquire the tacit constraints for creativity. If
this account is correct, then it 1s a blow to the purveyors of universal nostrums
for creativity. There can be no effective recipes for enhancing your creativity
across all domains. Creation 1s local to a particular domain of expertise,

Problems of shape

An important distinction in the problems that arise in daily life and in the
psychological laboratory is between what I shall refer to as one-off problems
and series problems. One-off problems are those that occur just once. If you
have solved a ene-off problem. then provided you have not forgotten the
solution you can apply it at once to any other instunce of the problem. A
classic example of a one-off problem is Duncker’s (1943) candle puzzle. You
are given a candle and a box of thumb tacks {(drawing pins), and your task is
to [ix the candle to the wall. Most people are stumped, unless and until they
have the insight that the box containing the thumb tacks can itself be pinned
to the wall and thereby support the candle. Once they have had this insight,
they retam it, and so the solution to any other instance of the problem is
trivial. The solution to other insight problems may not be so easy to retain.
Tom Ormerod et al. (2002) argue that retention depends on how easy it is to
recode the solution as a single step or a single idea. One corollary of this
analysis is that there is no such thing as an “insight” problem per se, i.e., the
quest for a decisive categorization is chimerical (pace Weisberg, 1996). All
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that can exist are problems that call for most naive individuals to have an
insight if they are to solve them.

In contrast to one-off problems, water jug problems come in a series of
different forms, e.g., using just three jugs, measuring respectively 127, 21 and
3 quarts, your task is to measure a quantity of 100 quarts. Infinitely many
water jug problems can be posed: they do not all have the same sort of
solution and the acquisition of one sort of solution can inhibit the use of
another (see, e.g., Luchins, 1942; Luchins & Luchins, 1950). The distinction
between one-off and series problems can also be drawn for problems in math-
ematics and science. The theoretical problem of relating mass, force. and
acceleration was solved by Newton. and later revised by Einstein. Their solu-
tions can be exploited to solve a series of practical problems in mechanics.

The study of one-off problems in the psychological laboratory is
intriguing, but it has methodological problems. As Tom Ormerod and I dis-
covered to our cost (in an unpublished study), it is difficult to distinguish
between the knowledge that individuals bring to a problem and the know-
ledge that they discover in trying to solve it. Likewise, it s difficult to observe
the development of their strategies for coping with the problem. The main
experimental procedure is to give hints of one sort or another in order to
trigger the knowledge requisite for the solution. This manipulation, however,
tells one little about an individual’s strategy. We need to understand how
people develop both knowledge and strategies, and the task calls for a series
of problems. This section of the chapter accordingly examines a series of
shape problems in which individuals have to make or to modify a shape by
the addition, removal, or rearrangement of its component pieces (see, ¢.8.,
Katona, 1940}. Here is an example:

Given the following arrangement of five squares:

in how many ways can you move three pieces to make exactly seven
squares of the same size as the originals and with no loose ends, i.e.,
additional pieces left over?!

1 One solution is:

There are seven other ways Lo solve the problem, i.e., a total of eight.
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Infinitely many shape problems can be posed, but there are three main
sorts:

»  problems calling for the removal of a certain number of pieces
»  problems calling for the addition of a certain number of pieces
»  problems calling for the rearrangement of a certain number of pieces.

Most shape problems are simple, yet they call for sufficient thought to be a
staple of puzzle books (see, e.g., Orleans & Orleans, 1983). Some shape prob-
lems, however, are sufficiently difficult that they defeat most naive individuals,
where “naive” here means an individual who has not had any relevant experi-
ence in solving these problems.

Shape problems illustrate most of the features of human problem solving,
and in what follows, the chapter uses them to illustrate a theory of human
problem solving. We begin with the simplest possible shape problem:

(1) Given the following five squares, add one piece to make six squares:
r S

e

The problem is trivial. But, why? There are at least two reasoms. First, the
symmetry of the figure ensures that the missing piece “pops out” of the dis-
play. This missing piece is highly salient. Human perceivers can subitize these
squares, i.¢., they can apprehend them in a single glance and see that a piece is
missing. This ability depends on parallel processing. In contrast, a serial
computer program can merely convolve a function for identifying a square
(typically a template) with each cell in the visual array, and thereby reveal the
presence of five squares and the three sides of a square with a missing piece.
The process does not yield an cutcome akin to the “pop out” phenomenology
of human perception. Second, the addition of only a single piece to a shape
maukes a neo-Darwinian strategy feasible. You add a piece arbitrarily here or
there, and sooner rather than later you will get the right answer.

For a naive participant, who has not seen the previous problem, the
following problem is slightly harder:

{2) Given the following six squares, remove one piece to leave exactiy five
squares with no loose ends, i.e., pieces that are not connected to any other

piece at one or other end:

In this case, the solution does not pop out, and naive individuals are likely
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to try one or two experimental moves at least in their mind’s eye using a

neo-Darwinian strategy.
The following problem is more interesting:

(3) Given the following six squares, remove five pieces to leave exactly
three squares with no loose ends:

HEE

You are invited to tackle this problem for yourself before you read on. You
are welcome to use matches, tooth picks, or pen and pencil as an aid. A neo-
Darwinian strategy can solve this problem, but it is laborious: There are over
6000 different ways to remove five pieces, and only ten of them yield a solu-
{ion to the problem. A computer program that I have written to model the
neo-Darwinian strategy churns away until by chance it derives a solution.
The generative stage removes a piece at random, and the evaluative stage
checks the result according to a single constraint: Does it solve the problem?
Human solvers almost certainly lack the patience and memory to tackle the
problem in such a stupid way. They either know what to do in order to solve it
(they may be wrong) or they are lost. In the latter case, depending on their
motivation, they flail around for some time. In unpublished studies, Louis
Lee and I have indeed observed this process of flailing around when indi-
viduals first tackle shape problems (see Lee & Johnson-Laird, 2003). They try
out seemingly arbitrary choices, which they undo when these moves fail to
yield the solution.

Suppose that after you have removed a single piece, you have some way to
assess whether your move is 2 good one moving you towards the solution or a
bad one that is not a step towards the solution. With this ahility, you could
use a neo-Darwinian strategy. You remove a piece at random, and evaluate
whether or not your move is a good one. If it is, you retain it, and then return
to the generative stage, which removes a second piece at random, and so on.
But, if your first move is not good, you abandon it, and return to the genera-
tive stage to choose a different first move, You proceed in this way until you
have solved the problem. The strategy is neo-Darwinian, but it is tolerably
efficient, because you make progress towards the solution move by move, i.e.,
vou are hill climbing (c¢f Ormerod et al., 2002). The crux is accordingly
whether you can evaluate moves as good or bad without having to solve the
preblem as a whole.

Let us suppose that you remove a piece at random using a neo-Darwinian
strategy:
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This move transforms problem (3) into a new one: You now have 1o remove
four pieces from the preceding array to leave exactly three squares with no
loose ends. So, is your move a good one or not? You are unlikely to have any
way to answer this question without carrying out some further moves and
assessing their consequences. Hence, you cannot use a neo-Darwinian strat-
egy based on an evaluative stage using only success as one constraint and
goodness of move as another. You must develop more powerful constraints
or a more powerful strategy. But how? The next section of the chapter aims to
answer this question,

The discovery system

The way people discover how to solve shape problems depends on three mental
components that they bring to the task. First, they understand the language in
which these problems are posed, and their knowledge includes a grasp of the
concepts of squares and pieces, of numbers both cardinal and ordinal, and
of the pertinent arithmetical operations of counting, adding, and subtract-
ing. Intelligent adults in some other cultures do not have these concepts, and
so they cannot understand, let alone solve, shape problems. Second, people
are equipped with the mechanisms of perception and action. They can see
squares, and they can envisage the consequences of removing a piece. These
mechanisms are unconscious: Introspection does not tell you how you seg at
once that a piece is missing in problem {1). Third, people are equipped with
a system for discovery. 1t enables them both to acquire knowledge about
problems from their attempts to solve them, and to develop a strategy for
coping with them. Such a strategy exploits the knowledge that they acquire
and that can constrain the process of solution. As we will see, the discovery
system stores the effects of different sorts of move. It can also shift such a
constraint from the evaluative stage of solving a problem to the generative
stage.

The process of discovery occurs as individuals explore the effects of differ-
ent moves in trying to solve a problem. Consider, again, problem (3) in which
the task is to remove five pieces from an array to eliminate three squares. You
are likely to tackie this problem by removing a piece and assessing the con-
sequences. Suppose you remaove a piece from a corner of the shape, then the

]
1]

It is now necessary to remove the remaining “loose end” to yield the following
shape. You have discovered something: One way to eliminate a square is to
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remove the two pieces making up a corner. A corner is indeed one of seven
sorts of configuration in a shape problem (see Figure 1.2, below).

A further result is that you now have a new problem: to remove three pieces
from the preceding shape to eliminatc two squares. 1f you remove another
corner, then discounting rotations there are three ways in which you could do
s0. In each case, your remaining problem is to remove one piece to eliminate
one square:

(a) _.I_ (&) _I_ (c)
I H |

In case (a), you are obliged to remove the loose end, and so you fail to solve
the problem. In case (b), you also fail, because here the only way to eliminate
a square as a result of removing a single piece is to remove a piece that is
common to two squares, thereby eliminating both of them. You have dis-
covered something new: Removing one middle piece, i.e., a piece in the middle
of two squares, eliminates both the squares. In case (c), you can succeed. You
can remove one piece to eliminate one square, as shown here:

Once more, you have made a discovery: You can eliminate a square by
removing an outer piece, i.¢., a piece in the square that has middle pieces from
the same square at both ends, but that is not itself a middle. There are, as we
will see presently, quite different solutions to problem (3).

What this analysis has illustrated is how the exploration of possible moves
leads to a tactical knowledge of the different sorts of pieces in shape problems,
and of the different effects of removing them. As Figure 1.2 shows, there are
seven sorts of piece in shape problems. These tactics, in turn, provide con-
straints on the creative process. When they are first acquired, they are
constraints that are discovered in the evaluative stage of trying to create a

Corner i Loose  Jain
g /Mlddle ond l
Iy
oo
T U-shape -~ 9
Quter

Figure 1.2 Illustrations of the seven sorts of piece in shape problems
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solution. A major change occurs, however, when such knowledge is shifted to
the generative stage of the process. You no longer have to try out moves in an
exploratory way, but, like the participants whom Louis Lee and I have tested
experimentally, you can go directly to the solution of at least certain problems
with no false moves (Lee & Johnson-Laird, 2003).

The discovery system operates by storing the effects of operations on
shapes. The order in which individuals develop a knowledge of the different
tactical steps, and the completeness of their knowledge, is likely to differ
depending on each individual’s experience. Table 1.1 summarises the complete
set of tactical steps for shape problems of the present sort.

Table 1.1 The seven tactical steps for a set of shape problems (see Figure 1.2 for
ilbustrations of the different sorts of piece)

1. To remove 1 piece and 0 squares, remove a loose end (obligatory).
2. To remove 1 piece and 0 squares, remove a join.

3. To remove 1 piece and | square, femove an outer.

4. To remove 1 piece and 2 squares, remove a middle.

5. To remove 2 pieces and 1 square, remove a corner.

6. To remove 3 pieces and 1 square, remove a U-shape.

7. To remove 4 pieces and 1 square, remove an isolated square,

Does the use of visual imagery help you with shape problems? Perhaps.
But, it has its limitations. Consider the following problem:

I take a bunch of thousands of very thin needles, and throw them up into
the air, imparting different arbitrary accelerations to each of them. They
fall to the ground. As they fall, however, I freeze them in mid-air. Are
there likely to be more needles nearly horizontal than nearly vertical,
more needles nearly vertical than nearly horizontal, or are the two
proportions likely to be roughly equal?

Many people say that the two proportions should be roughly equal. They are
wrong. Visual images tend to be two-dimensional. An accurate three-
dimensional representation shows that there are many more ways in which
a necdle can be nearly horizontal than it can be nearly vertical. A horizontal
needle can be pointing in any of the 360° compass directions, bur a vertical
needle must point, in effect, only due North (or due South). [magery is also
difficult in the case of the following figure. You have to imagine that each of
the lines that is crossed out has been remnoved trom the figure:

F 117
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One source of the difficulty is that looking at the figure interferes with your
ability to imagine its appearance with the crossed out lines missing. The
resulting figure is shown at the end of this section of the chapter.

Does symmetry influence the sequence of tactics that problem solvers
adopt? Consider the problem of removing four pieces from the following
shape in order to ehiminate four squares:

.
|

An obvious solution is to remove the symmetrical outer pieces:

A much less obvious solution is an asymmetrical one:

A sequence of the same tactical moves preserves symmetry, and symmetry
suggests the use of such a sequence. Indeed, individuals can carry out sym-
metrical operations in parallel rather than one after the other (pace Newell,
1990). Suppose you are given the following initial shape, and your task is to
remove four pieces to eliminate two squares:

.
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You can envisage removing the two top corners simultaneously:

You are quite unlikely to reach the following solution:

—

Symmetry is important in solving shape problems. As our unpublished stud-
ies show, symmetry makes certain moves salient. If they are indeed part of
the solution to a shape problem, the problem is simpler to solve than if they
are not part of the solution {Lee & Johnson-Laird, 2003).

The development of strategies

Strategies are the molar units of problem solving, tactics are the molecular
units, and their underlying perceptual and action mechanisms are the atomic
units. Tactics alone cannot enable you to solve a complex problem. You have
to discover how to combine them into useful sequences that make up a strategy.
Van der Henst, Yang, & Johnson-Laird (2002) have investigated how indi-
viduals develop strategies in order to make deductive inferences. Our results
corroborated the following principle of srrategic assembly: Naive individuals
assemble strategies bottom up as they explore problems using their existing
tactics, Once developed, a strategy can control thinking in a meta-cognitive
way, 1., individuals can consciously apply it top down (Van der Henst et al.,
2002).

The same principle appears to apply to the development of strategies to
solve problems. Hence, in some domains, different individuals are likely to
develop different sirategics. Likewise, different sorts of problem should in-
culcate different sorts of strategy. Shape problems, however, are suificiently
simple that the intelligent adults usually converge on a fairly comprehensive
knowledge of tactics, which they can use to solve shape problems with few
fulse moves (Lee & Johnson-Laird, 2603).

Instruction has an effect on strategies too. Katona (1940) demonstrated
this phenomenon. He tested two groups of participants with shape prob-
lems. One group was shown the solution to a few problems, and another
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group was given a lesson about the relations between numbers of pieces and
mumbers of squares - a lesson, in effect, about tactics. Only this second
group showed a positive transfer to new problems. Yet, for shape problems,
individuals are unlikely to develop beyond a multistage strategy in which
they use some tactical constraints to generate ideas and other constraints,
such as the goal of the problem, to evaluate the outcomes. A deep one-off
problem is whether there is a neo-Lamarckian strategy for shape problems,
that is, a strategy that solves any shape problem whatsoever without ever
making a false move.

Readers familiar with the seminal work of Newell and Simon (1972) may
wonder whether a means—ends strategy, in which individuals work backwards
from the desired goal, is feasible for shape problems. The answer is: no. The
goal state in shape problems is deliberately imprecise. It specifies how many
squares should remain, but not how they are arranged. A precise goal with
such an arrangement would amount to a solution of the problem. Granted an
imprecise goal, it is impossible to use a means-ends strategy. Feasible strat-
egies for shape problems call for a certain amount of working forwards from
the initial shape,

An initial strategy that intelligent adults seem to adopt is to work forwards
in the way that I sketched in the previous section. As they discover tactical
constraints, they adopt them to constrain the possibilities that they envisage.
For example, a person whose immediate problem is to remove one piece and
thereby eliminate two squares will look at once to see whether the shape
contains a middle piece. Likewise, a person who has to remove four pieces to
eliminate two squares will look to see whether the shape contains two corners.
A more systematic strategy uses the following sorts of constraint:

+  If the number of pieces to be removed is greater than the number of squares
to be eliminated, then remove an isolated square, a U-shape, or a corner.

= If the number of pieces to be removed is greater than the number of
squares to be eliminated and no further squares are to be eliminated, then
remove a loose end or a join.

» If the number of pieces to be removed is smaller than the number of
squares to be eliminated, then remove a middle.

+ If the number of pieces to be removed is equal to the number of squares
to be eliminated, then remove an outer.

Naive reasoners often begin by focusing either on the number of matches
to be removed or else the number of squares to be eliminated, and only later
realise the need to think about both these numbers at each step.

A more advanced strategy aims to decompose complex problems into tac-
tical moves. It starts by making an inventory of the different sorts of piece in
the shape. The shape may contain, for example, four corners (two pieces
each), seven middles, and two outers. If the goal is to remove five pieces in
order to eliminate three squares, then the solution must satisfy two equations:
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5 pieces to be removed = n,2.corners + nymiddle + njouter

3 squares to be eliminated = n, + 2n, +n,

Two simultaneous equations containing three unknowns are ill-formed, i.e.,
they can have more than one integral solution. Yet, they do constrain the set
of possible solutions. One solution, for instance, is n, = 2, n, = 0, and n, = 1.
The final stage is to try to construct such a solution. In fact, for problem 3, it
yields the familiar answer:

Two difficulties exist for the successful use of this strategy. The first is that
naive individuals have to discover how to solve simultaneous ill-defined equa-
tions. An insight that yields a solution to this one-off problem is to treat it as
an “occupancy” problem, i.e., to compute the different ways in which P pieces
can be put into N cells, where P is the number of pieces to be removed, and N
1s the number of squares to be removed. This step is likely to be beyond many
individuals. The second difficulty is that the inventory of a problem can
change, not merely guantitatively but also qualitatively, as each piece is
removed from a shape. Hence, at each removal step, it is prudent to categorise
the remaining pieces in the resulting shape all over again.

One feasible strategy, which | owe to my colleague Un Hasson, is that
individuals think at the level of squares, and so they treat problem (3) as
calling for the removal of three squares. There are six squares in the initial
shape, i.e., four squares at the corners and a vertical row of two squares in
the middle. Hence, individuals think about the different ways of removing
individual squares: If they remove three corner squares, they remove six
pieces, which fails to solve the problem; if they remove two corner squares
and one square in the middle, then they can solve the problem; and if they
remove both squares in the middle and one corner square, they can also
solve the problem. The details of the solutions, however, call for some care-
ful thought - working forwards from the initial shape -- about which particu-
lar picces to remove. We have observed a similar phenomenon: Individuals
soon realise that there are higher order configurations than those shown in
Figure 1.2, They learn, for example, to remove an E-shape (five matches
making up a corner and a U-shape} in a single move (Lee & Johnson-Laird,
2003).

Another sort of strategy depends on reformulating problems. Given prob-
lem (3) to remove five pieces and thereby eliminate three squares, 4 solver can
reformulate the problem taking into account the initial shape: Use 12 pieces
to make three squares. The tactical knowledge that each isoluted square
requires four pieces immediately yields the goal of constructing three isolated
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squares from the initial configuration. This goal in turn vields the familiar
solution shown in the preceding diagram.

Sull another strategy can be based on a different reformulation of the
problem: Remove any five arbitrary pieces, and then move any of the remaining
pieces into positions thatl were previously occupied but that make up three
squares. The result of removing the five pieces might be as follows, where the
dotted lines show the pieces that were previously in the shape:
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It is obvious that moving one or two pieces cannot solve the problem. A move
of three pieces, however, can yield the familiar solution illustrated above, A
coroliary of these observations about strategies is that the verbal framing of a
problem may bias individuals to adopt one strategy rather than another (see
Van der Henst et al., 2002).

A final note on imagery. The result of removing the lines crossed out in the
example earlier in this section is the following shape:

Insight

The previous sections of this chapter have explained how an exploration of
problems yields a knowledge of tactics and of ways of sequencing them into
problem-solving strategies. The human discovery system appears to lay down
a record of the outcome of various operations on problems, and the know-
ledge cumulates as a result of experience. But what about sudden insights? Do
they have no role to play in solving shape problems? Let us consider three
further problems:

(4) Given the following shape, remove two pieces to leave two squares
with no oose ends (see Levine, 1994, p. 91; Perkins, 2000, p. 111, for
versions of this problem):
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At first sight, the problern may seem to be impossible, but of course it isn’t.

(5} Given the following shape, add two pieces to make five squares, where
a square cannot have any pieces inside it:

—
l

(6} FThere are exactly four squares of the same size in a shape. Remove
one piece to eliminate all of them with no loose ends.

Before you read on, you should make every effort to solve each of these
problems. To solve each of the three problems, most readers are likely to need
an insight. The insight for problem (4) is that squares can be of different sizes.
This point is normally obvious, but assiduous readers who have tackled all
the problems in the chapter may by now have made the tacit assumption that
all squares in the solution to a shape problem must be the same size. The
solution to problem (4) is indeed the same shape as the starting shape for
problem (5): one small square is contained within another larger square. The
insight required to solve this problem accordingly calls for you to relax the
constraint that all squares are the same size.

Problem (5) is much harder. It depends on a deeper insight. The solution ts
the following shape:

You may object that there are only four squares here, or you may think
instead that the fifth square is the large one containing the four smaller
squares. This large square, however, is disqualified because the problem
specifies that a square cannot contain any pieces inside it. But look closely at
the centre of the shape, which is enlarged here:

il
—

The separate ends of the four picces meeting at the centre form a tiny square,
which is the required fifth one. When I have revealed this solution to people
who have given up on the problem, they usually give me the sort of old-
fashioned ook reserved for perpetrators of a bad pun. Yet, the solution is a



22 Johnson-Laird

genuine one, and it depends on an insight. You have to relax the constraint
that only the sides of pieces can be parts of squares: Ends of pieces can make
squares too.

At this point, if you have not solved problem (6) then I urge you to try it
one last time. Its solution also depends on an insight, which contravenes the
nature of all the shape problems that you have so far encountered in the
chapter. This solution depends on relaxing the constraint that shapes are two-
dimensional. They can also be three-dimensional, and Figure 1.3 shows the
required initial shape. If you remove the central vertical piece, then you
eliminate all four squares, because they cach become a rectangle.

When you have an insight, at one moment you are unable to solve a prob-
lem. and then at the next moment you are aware of the solution. The three
preceding problems illustrate the present theory's account of nsight. It
depends on changing the constraints currently governing the problem-solving
strategy. The current constraints fail to yield a solution. Indeed, the problem
may be provably insoluble given the current constraints. The process of
insight accordingly depends on the following steps:

(1) The current strategy fails to yield a solution.

(2) There is a tacit consideration of the constraints in the strategy.

(3) The constraints are relaxed in a new way.

(4) Many changes in constraints lead nowhere, but, with perseverance, a
change may be made that leads at once to the solution of the problem.

For example, the constraint that squares are the same size is relaxed to the
constraint that squares can be of different sizes. In some cases, as Kaplan and
Simon (1990) argued, the change in constraints can lead to a new representa-
tion of the problem. For instance, if squares can be in a three-dimensional
arrangement, then four squares (or more) can have a piece in common. Once
such an insight has occurred, it may be used henceforth to constrain the
generative stage itself: Individuals look at once for a three-dimensional
solution when two-dimensional attempts all fail.

"\_\_\

\V

7\

Figure 1.3 A three-dimensional shape that solves problem (6)
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Conclusions

This chapter has presented a theory of how people solve problems. According
to this theory, as they explore different “moves” in trying to solve a problem,
they discover a variety of tactical possibilities. These discoveries can occur
even if individuals fail to solve the problem in hand. But once they have
acquired a repertoire of tactics, exploration can also lead to the development
of a strategy for coping with the problems. The knowledge derived from
tactical exploration yields constraints on the process of problem solving. The
constraints are used at first in the evaluative stage of thinking. But, this neo-
Darwinian strategy is inefficient. Hence, individuals are likely to shift some
constraints to the actual generation of ideas to create a multistage strategy.
This shift is part of the process of discovering how to solve problems. The
problem-solver’s dream, however, is to acquire sufficient constraints on the
generative process that it mever yields any erroneous results. Such a neo-
Lamarckian strategy has to be acquired by those who master the improvisa-
tion of ideas in real time, e.g., professional jazz musicians (Johnson-Laird,
2002). Whether anyone develops a neo-Lamarckian strategy for shape
problems is an open question.

The present theory was illustrated by a series of shape problems, and the
reader may wonder whether it also applies to one-ofl problems, such as
Duncker’s candie puzzle. For a complex one-off problem, the same process of
discovery — yielding a knowledge of tactics — i1s feasible. But, most one-off
laboratory problems call for insight. That is, they are designed so that the
problem-solver’s initial strategy is almost certain to fail. Insight, on the pres-
ent account, depends on the discovery of new constraints. They do not always
lead to a solution, but when they do yield one suddenly, all the hallmarks of
the classic Gestalt phenromenon occur.

The Gestalt psychologists pioneered the study of problem solving. Paolo
Legrenzi, to whom this chapter is dedicated, is important because he
brought Gestalt ideas into modern cognitive psychology, and showed how
they related to mental models (see, e.g., Legrenzi, 1994). The present theory
has focused not on this aspect of the representation of problems, but on how
individuals acquire tactical knowledge and use it to develop strategic
thinking.
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