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Abstract
This article describes a theory that uses mental models to integrate deductive, induc-
tive, and probabilistic reasoning. It spells out the main principles of the theory and 
illustrates them with examples from various domains. It shows how models underlie 
inductions, explanations, estimates of probabilities, and informal algorithms. In all 
these cases, a central principle is that the mind represents each sort of possibility in a 
separate mental model and infers whatever holds in the resulting set of models. Finally, 
the article reviews what has been accomplished in implementing the theory in a single 
large-scale computer program, mReasoner.
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1.   INTRODUCTION
 The capacity to reason underlies mathematics, science, and technol-
ogy. It is essential for coping with everyday problems—without it, social life 
would be almost unimaginable. The challenge to psychologists is to explain 
its underlying mental mechanisms. Since Störring’s (1908) pioneering study, 
they have discovered several robust phenomena. Perhaps the most important 
is that naive reasoners—those with no training in logic—can make valid 
deductions, that is, inferences in which the conclusion is true in all the cases 
in which the premises are true (cf. Jeffrey, 1981, p. 1). And they are happy 
to do so about abstract matters with no ecological validity, as in Sudoku 
puzzles (Lee, Goodwin, & Johnson-Laird, 2008).

Fifty years ago, psychologists took for granted that human reasoning 
was rational. Individuals developed deductive competence during child-
hood, and the psychologists’ task was to pin down the nature of the formal 
logic underlying this ability. As Inhelder and Piaget (1958, p. 305) wrote, 
“Reasoning is nothing more than the propositional calculus itself ”. There 
may be vagaries in performance, but faulty reasoning does not occur (Henle,  
1962) or is attributable to local malfunctions in the system—a spanner in 
the works rather than an intrinsic flaw (Cohen, 1981). Indeed, theories of 
deduction in cognitive psychology began with accounts based on formal 
logic (e.g. Braine, 1978; Johnson-Laird, 1975; Osherson, 1974–1976). These 
views, of course, echo those of Enlightenment philosophers. But, another 
robust phenomenon that psychologists discovered is that individuals differ 
in their ability to reason. A few are very good, a few are very bad, and most 
are somewhere in the middle. Differences in ability are vast, and correlate 
with the tests of academic achievement, as proxies for measures of intel-
ligence (Stanovich, 1999). For everyone, however, failures are inevitable: 
complex inferences are computationally intractable.

Nowadays, a consensus exists that that the psychology of reasoning has 
undergone a deep change—even, some say, a paradigm shift. The acces-
sibility of digital computers was a license for theorizing, and psychological 
theories of reasoning have multiplied at a startling rate. Quite what the new 
foundations of reasoning should be is controversial. One view is that humans 
are rational but in terms of the probability calculus rather than logic (e.g. 
Oaksford & Chater, 2007; Tenenbaum & Griffiths, 2001). One view is that 
natural selection has equipped the mind with modules for reasoning about 
special topics, such as social exchange (Cosmides & Tooby, 2005). One view 
is that rationality presupposes a normative system, and psychologists should 
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abandon norms in favor of descriptions (Evans, 2012). One revenant is that 
logic, or logics, provides the inferential machinery (Rips, 1994; Stenning & 
van Lambalgen, 2008). We will not try to assess these views, but for those 
who espouse such a theory, we recommend the answers to two questions as 
a recipe for resipiscence: Has the theory been implemented in a computer 
program, and does it predict most of the 60 or more experimental results 
reported here? The goal of the article, however, is not polemical, but to 
describe a different theory.

Craik (1943) postulated that thinking was based on making mental sim-
ulations of the world to anticipate events. This idea in turn has historical 
antecedents, although Craik was unlikely to have known them (see Johnson-
Laird, 2004, for the history of mental models). Oddly, however, Craik did 
not consider reasoning, other than to make a casual remark that it was based 
on “verbal rules” (Craik, 1943, p. 81). In the spirit of Craik, we argue that 
the mind is neither a logical nor a probabilistic device, but instead a device 
that makes mental simulations. Insofar as humans reason logically or infer 
probabilities they rely on their ability to simulate the world in mental mod-
els. The application of simulation to reasoning is based on mental models 
of the possibilities to which the premises refer, and a valid deduction has 
a conclusion that holds in all these models. This idea was first proposed a 
generation ago ( Johnson-Laird, 1975). Since then, its proponents and critics 
have revised and extended it in hundreds of publications.

The theory of mental models—the model theory for short—is contro-
versial, as are all current theories of reasoning, and the only way to put it 
beyond controversy calls for two crucial steps. The first step follows Leibniz 
(1685, 1952), who dreamt of replacing argument with calculation. It is to 
implement a unified theory of reasoning in a computer program that, for any 
inferential task, outputs the responses that human reasoners should make, the 
respective likelihoods and latencies of these responses, the processes underly-
ing them, and, where relevant, valid or ideal responses. The second step is 
to show in stringent experiments that the program’s predictions are correct. 
We are a long way from the two steps. Researchers have applied the model  
theory to many sorts of inferential task, implemented computational models of 
these applications, and tested the theory experimentally. But, until recently, 
the work has been piecemeal rather than unified.

What are the essentials of the model theory, and what counts as a mental 
model? This article is going to answer these questions step by step, and it 
aims above all to enable readers to understand the model theory without 
having to read anything else. It illustrates the theory’s application to most 
sorts of reasoning. Its plan mirrors these aims. It begins with an outline of the 
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main sorts of reasoning. It follows with sections that elucidate each of the 
theory’s main principles. It then considers the role of models in inductive 
reasoning, explanatory reasoning, reasoning about probabilities, and reason-
ing that yields informal algorithms. The final section of the article reviews 
what has been accomplished in unifying the theory, and in implementing it 
in a single computer program to achieve Leibniz’s (and our) dream.

2.   WHAT IS REASONING?
 Suppose you infer:

If the ink cartridge is empty then the printer won’t work.
The ink cartridge is empty.
So, the printer won’t work.

You are making a deduction: your inference is valid because your conclusion 
holds in any case in which the premises hold. Suppose instead you infer:

If the ink cartridge is empty then the printer won’t work.
The printer won’t work.
So, the ink cartridge is empty.

You are making an induction. Your inference isn’t valid because there 
may be another reason that the printer won’t work. Yet, your conclusion 
may be true, especially if the printer is producing blank pages. For many  
theorists—Aristotle for one, all inferences fall into one of these two catego-
ries: deduction and induction.

Aristotle defined induction as an inference from a particular assertion to 
a universal one (Topics, 105a13). But, inductions are often from the particu-
lar to the particular, as is your induction about the printer. Hence, a better 
way to distinguish between the two sorts of inference is in terms of seman-
tic information ( Johnson-Laird, 1983, chap. 2). The more possibilities that 
an assertion rules out, the more information it conveys (Bar-Hillel, 1964). 
An inference to a conclusion that refers to all the same possibilities as the 
premises do, or at least includes them all in what it refers to, is a deduction. 
Consider again your earlier deduction:

If the ink cartridge is empty then the printer won’t work.
The ink cartridge is empty.
So, the printer won’t work.

The premises refer to just one possibility:
The ink cartridge is empty and the printer won’t work.

Hence, your inference is valid because its conclusion holds in the one pos-
sibility to which the premises refer. The conclusion therefore does not 
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increase information. But semantics should not be confused with epistemol-
ogy: a conclusion may be news to the person who draws it, bringing to mind 
a novel proposition. An inference to a conclusion that refers to only some of 
the possibilities to which the premises refer, although it may add some new 
possibilities too, is an induction. Consider again your earlier induction:

If the ink cartridge is empty then the printer won’t work.
The printer won’t work.
So, the ink cartridge is empty.

The premises refer to two possibilities:
The ink cartridge is empty. The printer won’t work.
The ink cartridge isn’t empty. The printer won’t work.

Your conclusion, however, refers to only one of these two possibilities. It goes 
beyond the information in the premises, and it is consistent with them, that is, 
it is possible that the ink cartridge is empty. But, the conclusion does not follow  
validly. A special case of induction is one that also introduces new ideas to 
explain something, and this sort of reasoning is known as abduction, for example:

If the ink cartridge is empty then the printer won’t work.
The printer won’t work.
Hence, there’s a fault in the connection between the computer and the 
printer.

Inferences either maintain or throw information away (deductions) or they 
increase information (inductions). One other relation between the premises 
and conclusion remains. If they refer to disjoint possibilities, they contradict one 
another. In logic, any conclusion whatsoever follows validly from a contradic-
tion: the premises don’t refer to any possibility in which the conclusion fails to 
hold because the premises don’t refer to any possibility. Naive reasoners, how-
ever, reject inferences from self-contradictions. For them, the definition of valid-
ity has a rider: a valid inference is one in which the conclusion holds in every 
possibility to which the premises refer, and there is at least one such possibility.

Reasoners aim to draw conclusions that are true, or at least plausible. 
But, they also aim to draw novel and parsimonious conclusions, and so they 
would feel silly just to form a conjunction of all the premises even though 
such an inference is valid. They know more when they know:

It’s raining
than when they know:

It’s raining or it’s cold, or both.
Yet, the disjunctive conclusion follows validly from the categorical premise. 
Hence, not all valid deductions are sensible, and it would be silly to make this 
particular inference because it throws away information by adding a disjunctive 
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alternative to a premise. So, a theory of deductive competence—of what the 
inferential system computes—assumes that individuals have the potential to 
be rational and an awareness of this potential. They abide by the foregoing 
constraints. In sum: “To deduce is to maintain semantic information, to sim-
plify, and to reach a new conclusion” (Johnson-Laird & Byrne, 1991, p. 22). 
These constraints are not easy to embody in a theory based on formal logic, 
and this difficulty explains why such theories, like automated theorem provers 
in artificial intelligence, focus on the evaluation of given conclusions. Induc-
tive competence also aims for parsimony and novelty, but it goes beyond the 
information given and ultimately aims to explain phenomena.

3.   MODELS OF POSSIBILITIES
 The fundamental assumption of the model theory is that each mental 
model represents what is common to a distinct set of possibilities. Hence, an 
assertion such as:

A triangle is on the right of a circle
has a single mental model, which we depict in this diagram:

The left-to-right axis of the model corresponds to the left-to-right axis 
of a scene, and the disposition of the triangle and circle in the model cor-
responds to their disposition in a scene for which the assertion is true. The 
model represents an indefinite number of possibilities that have in common 
only that a triangle is on the right of a circle. Of course, the relative sizes 
of the figures in the model, their distance apart, and so on, play no role in 
reasoning from the model, but we defer an explanation of how their irrel-
evance is represented until Section 11.

Everyone prefers to think about just one possibility at a time. Intuitions 
work in this way. And the theory postulates two separate systems for reason-
ing, one for intuitions and one for deliberations—a familiar distinction in 
“dual process” theories of reasoning (see, e.g. Evans, 2008; Kahneman, 2011; 
Reitman, 1965; Sloman, 1996; Stanovich, 1999; Verschueren, Schaeken, & 
d’Ydewalle, 2005). The model theory distinguishes between the two sys-
tems in computational power, and we have implemented both of them  
in  computer programs (Khemlani & Johnson-Laird, 2012a; Khemlani, 
 Lotstein, & Johnson-Laird, 2012). The intuitive system, which is sometimes 
known as “system 1”, has no access to working memory, and so it can repre-
sent only one mental model at a time (Johnson-Laird, 1983, chap. 6), and it 
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cannot carry out recursive processes, including arithmetical operations such 
as counting. It lacks even the computational power of a finite-state automa-
ton (Hopcroft & Ullman, 1979) because it can carry out a loop of opera-
tions for only a small finite number of times—a restriction that is built into 
its computer implementation. In contrast, the deliberative system, which is 
sometimes known as “system 2”, has access to working memory, and so it 
can search for alternative mental models, and carry out recursive processes, 
such as counting and arithmetical operations, until they overwhelm its pro-
cessing capacity.

One way in which to overwhelm the deliberative system is to force it to 
reason about disjunctions. An inclusive disjunction, such as:

There’s a triangle or there’s a circle, or both
includes the joint possibility of both the triangle and the circle, and so it 
refers to three sorts of possibility. It therefore calls for three mental models, 
which we show on separate rows in this diagram:

In this case, spatial relations play no role in the use of the models. An exclu-
sive disjunction, such as:

Either there’s a triangle or there’s a circle, but not both
exclude the joint possibility, and so it calls for only two mental models:

Models preoccupy system 2, and so more models mean more work. The 
theory therefore predicts that deductions from exclusive disjunctions should 
be easier than those from inclusive disjunctions, as when either of the dis-
junctions above occurs with the categorical assertion:

There isn’t a circle.
This assertion eliminates any model in which there is a circle, and so it 
follows validly in both cases that:

There is a triangle.
Evidence corroborates the prediction (e.g. Johnson-Laird, Byrne, & 
Schaeken, 1992), and it also shows that inferences from conjunctions, which 
have just one model, are easier than those based on disjunctions (García-
Madruga, Moreno, Carriedo, Gutiérrez, & Johnson-Laird, 2001).
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The sorts of inference that can overwhelm the deliberative system are 
“double disjunctions” ( Johnson-Laird et al., 1992), which are from pairs of 
disjunctive premises, such as:

June is in Wales, or Charles is in Scotland, but not both.
Charles is in Scotland, or Kate is in Ireland, but not both.
What follows?

The two possibilities compatible with the first premise are relatively easy 
to envisage, but it is difficult to update them with those from the second 
premise, although the result is just two possibilities:

June in Wales Kate in Ireland 

Charles in Scotland 

Of course, real mental models represent these spatial relations, and are not 
phrases, which we use here for convenience. The two models yield the 
conclusion:

Either June is in Wales and Kate is in Ireland or Charles is in Scotland.
Inferences become even harder when disjunctions are inclusive. In one 
experiment, 25% of the participants, who were from the general public, 
drew valid conclusions from exclusive disjunctions, but this figure fell to 
below 10% for inclusive disjunctions. The result is hardly surprising, but 
what was striking was the nature of the modal errors: for all the inferences, 
the participants drew conclusions corresponding to a model of a single 
possibility. Just under a third of all the participants’ responses were conclu-
sions of this sort. The result suggests that when the task was too much for 
them, they fell back on their intuitions and envisaged just a single model 
of the premises. So, their conclusions were consistent with the premises 
but did not follow from them. The performance of undergraduates showed 
the same pattern. But, when the disjunctions were presented in equivalent 
electrical circuit diagrams or analogs of them, they performed better and 
faster (Bauer & Johnson-Laird, 1993). Their conclusions, however, still bore 
out a failure to consider all the possibilities, and so most errors were at least 
consistent with the premises.

Mental models represent possibilities, and so the more models that are 
necessary to make an inference, the harder that inference is to make. Indi-
viduals are in danger of overlooking a model. When the deliberative system 
is vastly overburdened, reasoners may even fall back on the intuitive system 
and draw a conclusion that is consistent with only a single model. One 
side effect of the use of models is that reasoners are most unlikely to draw 
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conclusions that throw semantic information away by adding disjunctive 
alternatives.

4.   ICONS AND SYMBOLS
 Mental models are iconic insofar as possible. What “iconic” means is 
that their structure corresponds to the structure of what they represent (see 
Peirce, 1931–1958, Vol. 4, paragraph 447). One example is the mental model 
of the assertion, the triangle is on the right of the circle, which we diagrammed 
in the previous section. Another example is an electrical circuit diagram 
with the same structure as the circuit it denotes. The great advantage of an 
icon, as Peirce realized, is that its inspection yields new information. Given 
the premises:

The triangle is on the right of the circle.
The square is on the right of the triangle.

The intuitive system can build the model:

It yields a new relation, namely, the square is on the right of the circle, and so 
this transitive inference emerges from scanning the model. To establish its 
validity, reasoners need to call on the deliberative system to check that no 
alternative model of the premises refutes the conclusion.

When premises are consistent with more than one spatial layout, infer-
ences are more difficult than the preceding example (e.g. Byrne & Johnson-
Laird, 1989; Carreiras & Santamaría, 1997;  Vandierendonck, Dierckx, & De 
Vooght, 2004). Likewise, reasoners try to construct initial models that do 
not call for a rearrangement of entities (e.g. Jahn, Knauff, & Johnson-Laird, 
2007; Knauff & Ragni, 2011), and inferences that call for such rearrange-
ments are more difficult than those that do not (e.g. Krumnack, Bucher, 
Nejasmic, Nebel, & Knauff, 2011). Analogous results bear out the use of 
iconic representations in temporal reasoning, whether it depends on rela-
tions such as “before” and “after” (Schaeken, Johnson-Laird, & d’Ydewalle, 
1996a) or on the tense and aspect of verbs, as in:

John has cleaned the house.
John is taking a shower.
John is going to read the paper.
Mary always does the dishes when John cleans the house.
Mary always drinks her coffee when John reads the paper.
What is the relation between Mary drinking coffee and doing the dishes?
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Participants inferred that Mary drinks her coffee after doing the dishes, in 
an experiment that controlled such factors as order of mention (Schaeken, 
Johnson-Laird, & d’Ydewalle, 1996b).

The earlier example of a transitive inference is child’s play (see, e.g. Bryant & 
Trabasso, 1971). But, many inferences based on iconicity are more complex, 
such as those that combine both spatial and temporal relations in kinematic 
simulations (see Section 10). The intuitive system can also mislead adult 
reasoners. It constructs only a simple model of a typical situation. Given this 
sort of problem:

Ann is a blood relative of Beth.
Beth is a blood relative of Cal.
Is Ann a blood relative of Cal?

Many adult reasoners respond, “Yes”. The relation holds in their model, 
which represents lineal descendants or siblings. They fail to search assidu-
ously for an alternative model—it takes work to engage the deliberative sys-
tem, or a clue to a possible alternative model, such as a reminder that people 
can be related by marriage. Indeed, Ann and Cal could be Beth’s parents, 
not blood relatives of one another (Goodwin & Johnson-Laird, 2005, 2008).

Visual images are iconic, and so some theorists suppose that they play a 
key role in reasoning (e.g. Kosslyn, 1994, p. 404). They do play a role: they 
impede reasoning. To see why, it is crucial to distinguish among relations that 
elicit visual images, such as “dirtier than”, relations that elicit spatial relations, 
such as “on the right of”, and relations that are abstract, such as “better than”. 
Individuals are slowest in reasoning from visual relations (Knauff & Johnson-
Laird, 2002), but do not differ reliably in reasoning from the other sorts of 
relation. As an fMRI study showed, only visual relations elicited additional 
activity in visual cortex (Knauff, Fangmeier, Ruff, & Johnson-Laird, 2003). 
Knauff (2013) tells the whole story: visual imagery is not necessary for rea-
soning, which is just as well because some relations, such as those between 
sets, have iconic representations that may not be visualizable.

Not everything can be represented in an icon. A crucial example is a 
negation, such as:

The triangle is not on the right of the circle.
Reasoners could try to list all the alternative affirmative possibilities—the 
triangle is on the left of the circle, behind it, and so on—but it would be criti-
cal, not only to include all the possibilities but also to make explicit that the 
list is exhaustive. Alas, neither these conditions nor the meaning of negation 
itself can be represented in an icon. The model theory accordingly introduces 
a symbol for negation, which is linked to its meaning: a negative assertion 
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or clause is true if, and only if, its corresponding affirmative is false. This 
meaning goes back to Aristotle’s De Interpretatione, and with some exceptions, 
it holds for English usage (Khemlani, Orenes, & Johnson-Laird, 2012). The 
mental model of the preceding assertion is denoted in the following diagram:

where “¬” denotes the symbol for negation, and the brackets symbolize the 
scope of the negation, that is, what it applies to. Hence, a comparison of this 
model with an actual scene would yield the value “true” if, and only if, the 
relevant circle and triangle were not in the spatial relation represented in 
the embedded model.

Few people grasp the concept of “negation”, and so prudent experi-
menters ask them about the “denial” of assertions. But, even so, most reason-
ers err in enumerating the possibilities referred to by compound assertions, 
such as:

He denied that John was watching TV and smoking, or else Ann was 
writing a letter.

Once again, however, number of models is the key variable (Khemlani et al., 
2012). It is harder to enumerate the possibilities for the denial of a conjunc-
tion, A and B, which has three models:

¬ A ¬ B 

¬ A  B 

 A ¬ B 

than to enumerate the possibilities for the denial of an inclusive disjunction, 
A or B, which has one model:

¬ A ¬ B 

There are plenty of other abstract concepts, such as “possibility”, “truth”, 
and “obligation” that transcend iconicity.

5.   THE PRINCIPLE OF TRUTH
 The model theory postulates a principle of truth: mental models rep-
resent what is true, not what is false unless assertions refer to falsity. Here is 
an example of an exclusive disjunction with a negative clause:

Either there isn’t a triangle or there’s a circle.
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It has two mental models:

They represent the possibilities in which the disjunction is true, not the 
possibilities in which it is false. But, the principle of truth applies at a lower 
level. Both of the preceding models represent clauses in the disjunction only 
when they are true. In contrast, fully explicit models also represent clauses 
that are false. In the first model above, it is false that there is a circle; and 
in the second model, it is false that there isn’t a triangle, that is, there is a 
triangle. Hence, the fully explicit models of the exclusive disjunction are:

where we use negation to represent falsity. The fully explicit models show 
that the disjunction is equivalent to the biconditional assertion:

There isn’t a triangle if, and only if, there isn’t a circle.
Reasoners don’t immediately grasp this equivalence—a failure that shows 
that they rely on mental models, not fully explicit models.

When participants are given a compound assertion, such as a disjunction, 
and are asked to list what is possible, the principle of truth constrains them, and 
so they list the possibilities corresponding to mental models (see, e.g. Barres & 
 Johnson-Laird, 2003; Johnson-Laird & Savary, 1995). The advantage of the prin-
ciple is that it reduces the processing load of reasoning. But, when we implemented 
the principle in a computer program, we discovered an unexpected downside.

Could both of these disjunctions be true at the same time?
Either the pie is on the table or the cake is on the table, but not both.
Either the pie isn’t on the table or the cake is on the table, but not both.

Most people say, “Yes” ( Johnson-Laird, Lotstein, & Byrne, 2012). The  mental 
models of what’s on the table according to the first disjunction are:

Pie

Cake 

And the mental models of what’s on the table according to the second dis-
junction are:

¬ Pie 

Cake 
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The presence of the cake is common to both sets of models, and so it seems 
that the two assertions can both be true at the same time, that is, when the 
cake is on the table. In contrast, the fully explicit models of the two disjunc-
tions are as follows:

Pie    ¬ Cake

¬ Pie       Cake

and:

¬ Pie ¬ Cake 

Pie    Cake 

As readers can see, no model is common to both assertions, and so they can-
not both be true at the same time.

The program implementing the model theory predicts these fallacies, 
and others too. Their occurrence has been corroborated in many sorts of 
deductions, including those based on:

Johnson-Laird & Savary, 
1999);

Walsh & Johnson-Laird, 2004);
Khemlani & Johnson-Laird, 2009);

Yang & Johnson-Laird, 2000).
The fallacies tend to be compelling and to elicit judgments of high con-
fidence in their conclusions, and so they have the character of cogni-
tive illusions. Other illusions led to conclusions about what is probable 
( Johnson-Laird & Savary, 1995), possible (Goldvarg & Johnson-Laird, 2000), 
and permissible (Bucciarelli & Johnson-Laird, 2005). And still others con-
cerned the evaluation of the consistency of assertions (Legrenzi, Girotto, & 
Johnson-Laird, 2003). Each study examined several sorts of illusion and 
matched control problems. Why so many studies of illusions? Because only 
the model theory predicts them, and so they are a litmus test for the use of 
mental models.

6.   MODELS AS COUNTEREXAMPLES
 In reasoning, a counterexample is a possibility that is consistent with a 
set of premises, but not with a putative conclusion, and so it shows that the 
conclusion does not follow validly from the premises. The intuitive system 
can generate at most a single model at a time. To establish the validity of a 
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conclusion, the deliberative system has to search for alternative models and 
to show either that no other mental model can be formed from the premises 
or that the conclusion holds in the alternatives. If the deliberative system 
creates a model that is a counterexample then it can search for an alterna-
tive conclusion that holds in all the models or, if this search fails, declare that 
no valid conclusion follows from the premises. As we pointed out earlier, a 
conclusion such as a conjunction of the premises follows validly from any 
set of premises, and so an alternative conclusion needs to be parsimonious 
and to establish a new relation not explicitly asserted among the premises. 
In short, counterexamples are crucial for rationality. Without the ability to 
create them, individuals can infer conclusions, but they have no ready way to 
establish their invalidity. So, to what extent do individuals make use of them?

On the one hand, reasoners often fail to use counterexamples when they 
are drawing conclusions from premises—to the degree that one model-
based theory makes no use of them (Polk & Newell, 1995). On the other 
hand, all the participants in one study spontaneously used them to revise 
their responses (Bucciarelli & Johnson-Laird, 1999).

There are two sorts of invalid conclusion. One sort contradicts the 
premises—their respective sets of possibilities are disjoint. The other sort is 
consistent with the premises, but does not follow from them, that is, there 
are possibilities to which the premises, but not the conclusion, refer. The 
model theory predicts that the invalidity of contradictions should be easier 
to detect than the invalidity of consistent premises: the former don’t have 
a mental model in common with the premises whereas the latter do. The 
theory also predicts that when individuals are asked to explain why a con-
clusion does not follow from the premises, they should tend to point out 
the contradiction in the first case but to exhibit a counterexample in the 
second case. A study corroborated both of these predictions (Johnson-Laird & 
Hasson, 2003). The participants were more accurate in identifying invalid 
inferences in which the conclusion contradicted the premises (92% cor-
rect) than those in which the conclusion was consistent with the premises 
(74% correct). To justify their judgments, they used counterexamples more 
often for conclusions consistent with the premises (51% of cases) than for 
conclusions inconsistent with them (21% of cases). Of course, they used 
other strategies too. One participant, for instance, pointed out that a piece of 
necessary information was missing from the premises. But, the use of coun-
terexamples correlated with accuracy in the evaluation of the inferences.

An fMRI study contrasted reasoning and mental arithmetic from 
the same premises (Kroger, Nystrom, Cohen, & Johnson-Laird, 2008).  

Author's personal copy



Toward a Unif ied Theory of Reasoning 15

The Psychology of Learning and Motivation, First Edition, 2014, 1-42

The participants read a statement of the problem, then three premises, 
and finally either a conclusion or an arithmetical formula, which they 
had to evaluate. The experiment included easy inferences that followed 
 immediately from a single premise and difficult inferences that should lead 
individuals to search for counterexamples, as in this case:

There are five students in a room.
Three or more of these students are joggers.
Three or more of these students are writers.
Three or more of these students are dancers.
Does it follow that at least one of the students in the room is all three: a 
jogger, a writer, and a dancer?

Most people think first of a possibility in which the conclusion holds. But, 
those who search for a counterexample may find one, such as this model 
in which each of the five individuals shown in separate horizontal rows is 
a student:

Jogger Writer

Writer

Writer

Jogger

Jogger Dancer

Dancer

Dancer

Hence, it doesn’t follow that a student is all three. While the participants 
were reading the premises, the language areas of their brains were active 
(Broca’s and Wernicke’s areas), but then other areas carried out the solu-
tion to the problems. Right prefrontal cortex and inferior parietal lobe 
were more active for reasoning than for calculation, whereas regions in left 
prefrontal cortex and superior parietal lobe were more active for calcula-
tion than for reasoning. Right prefrontal cortex—a region known as the 
right frontal pole—was active only during the difficult inferences calling 
for a search for counterexamples. Other studies have shown that difficult 
inferences activate right frontal cortex (Kroger et al., 2002; Waltz et al., 
1999). The anterior frontal lobes evolved most recently, they take longest to 
mature, and their maturation relates to measured intelligence (Shaw et al., 
2006). Whether they are activated merely by problems calling for delibera-
tion remains unclear.
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7.   MODULATION AND THE USE OF KNOWLEDGE
 In logic, the interpretation of logical terms is constant, as for its ideal-
ized connectives akin to “if ”, “and”, and “or”. But, the model theory rec-
ognizes that their interpretation in everyday language can be modified by 
the meanings of the clauses that they connect, the entities referred to in 
these clauses, and general knowledge. We refer to the process as modulation, 
and we illustrate it with the most notorious case, conditional assertions (see 
Johnson-Laird & Byrne, 2002).

Conditionals of the grammatical form, if A then B, receive a logical 
interpretation by default. When individuals have to list the fully explicit 
possibilities to which a conditional refers, they tend to list:

A B

¬ A

¬ A

B

¬ B

where A and B have as values actual propositions (see, e.g. Johnson-Laird &  
Savary, 1995). Barrouillet and his colleagues have shown that children 
around the age of 8 years list only one possibility, A and B, a conjunctive 
interpretation; around the age of 11 years, they include another possibility, 
¬ A and ¬ B, a biconditional interpretation; and around the age of 15 years, 
they list the three possibilities above (Barrouillet & Lecas, 1998). The pro-
cessing capacity of working memory is a better predictor than chronologi-
cal age for the number of possibilities that children list (Barrouillet, Grosset, & 
Lecas, 2000; Barrouillet & Lecas, 1999).

In reasoning, individuals rely on the mental models of conditionals, which 
consist of an explicit model of the salient case in which both clauses hold, and 
a content-less placeholder for other possibilities in which the if-clause is false:

A B

.  .  .

One corollary concerns inferences of the form:
If A then B.
A.
What follows?
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Individuals easily infer the conclusion, B. It follows at once from the mental 
models. A contrasting inference is:

If A then B.
Not-B.
What follows?

The second premise eliminates the one explicit mental model, and so it seems 
that nothing follows—a common response. Only if reasoners flesh out their 
mental models, or adopt some analogous strategy, can they make the valid 
inference: Not-A. The difference between the two sorts of inference is highly 
robust.  A more striking corroboration of the model theory is that the presen-
tation of the premises in the opposite order improves performance with the 
difficult inference—it renders unnecessary the need to construct the explicit 
mental model of the conditional, thus making room for models of the pos-
sibilities in which not-A holds (see Girotto, Mazzocco, & Tasso, 1997).

Modulation has several effects, and one of them is to block the construction 
of models of possibilities. A conditional, such as:

If she played a musical instrument then it wasn’t the flute
refers to only two possibilities because knowledge that a flute is a musical 
instrument blocks the construction of the possibility that she didn’t play a 
musical instrument but did play the flute. Hence, the conditional alone yields 
the conclusion that she didn’t play the flute. The principal possibility to which 
almost all conditionals refer is the one in which both the if-clause and the 
then-clause hold. Hence, the theory postulates that if a conditional refers to 
more than one possibility, then this possibility must be one of them. Modula-
tion can accordingly yield the preceding interpretation or the biconditional 
interpretation. Still other effects of modulation occur with then-clauses that 
themselves express only a possibility, such as “if Hillary runs then she may win”.

Experiments have corroborated that modulation blocks the construc-
tion of models (Quelhas, Johnson-Laird, & Juhos, 2010). Consider these two 
conditionals translated from the Portuguese:

If the dish is lasagne then its basis is pasta.
If the cake is made of eggs then it can be suspiro.

For the first sort of conditional, participants allow that the dish can be pasta 
but not lasagne. But, for the second sort of conditional, they do not allow 
that the cake can be suspiro but not made of eggs—all Portuguese know 
that suspiro is made from eggs. The two sorts of conditionals yield appro-
priately different patterns of inference.

Consider the inference:
Luisa didn’t play soccer.
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Therefore, if Luisa played music then she didn’t play soccer.
The conditional conclusion refers to three possibilities in which Luisa 
played, respectively:

Music ¬ Soccer

¬ Music ¬ Soccer

¬ Music    Soccer 

Hence, the conclusion refers to the possibility to which the premise refers, 
and so the inference is valid. Yet, most people reject it. Why? One answer 
is that it is unacceptable because it throws information away, that is, its 
conclusion also refers to an alternative possibility that conflicts with the 
premise:

¬ Music Soccer

This conflict, as Orenes and Johnson-Laird (2012) argued, may deter indi-
viduals from drawing the inference. If so, then modulation that blocks the 
conflicting model should yield an acceptable inference, for example:

Luisa didn’t play soccer.
Therefore, if Luisa played a game then she didn’t play soccer.

The conditional now refers to just two possibilities in which Luisa played:

A game ¬ Soccer 

¬ A game ¬ Soccer 

The conditional can’t refer to the case in which Luisa didn’t play a game 
but played soccer because soccer is a game. So, both the preceding possibili-
ties refer to the same possibility as the premise. In this case, a highly reliable 
increase occurs in the percentage of participants who accepted the inference. 
And analogous phenomena occur with inferences to disjunctive conclusions.

Another effect of modulation is to introduce spatial, temporal, or other 
relations between the if-clause and the then-clause. As a consequence, indi-
viduals make different inferences (Quelhas et al., 2010). For example, given 
these premises:

If Laura got the virus, then she infected Renato.
If she infected Renato, then he went to hospital.
Laura got the virus.
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Participants tend to infer that Laura got the virus before Renato went to 
hospital. But, given these premises:

If Cristina wrote the article, then Marco asked her to write it.
If Marco asked her to write it, then he met her at the meeting.
Cristina wrote the article.

Participants tend to infer that Cristina wrote the article after Marco met 
her. The temporal inferences depend on the participants’ general knowledge 
about the typical orders of events.

A subtle effect of temporal modulation is illustrated in the following 
contrasting examples (Juhos, Quelhas, & Johnson-Laird, 2012). The first 
example is:

If the author writes the book, then the publisher publishes it.
The author writes the book.
What follows?

Individuals tend to infer:
The publisher publishes it.

The second example is:
If the author writes the book, then the publisher publishes it.
The publisher publishes the book.
What follows?

Individuals tend to infer:
The author wrote the book.

The difference is that for the first inference, the participants tended to use 
the present tense (the experiment was carried out in Portuguese), whereas 
for the second inference, they tended to use the past tense. As in English, 
which has no future tense, the present tense in Portuguese can be used 
to refer to future events. The same phenomenon occurred in inferences 
from disjunctions. The categorical premise accordingly establishes a refer-
ence time, and events prior to it are referred to in the past tense, and events 
subsequent to it are referred to in the present tense. This sort of modula-
tion is tacit—participants are not usually aware of its effects—but it shows 
that general knowledge influences the interpretation of conditionals and 
disjunctions.

A crucial corollary of modulation concerns logical form. A typical for-
mal rule of inference is:

A or B.
Not-B.
Therefore, not-A.
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This rule is applicable to any premises that have the corresponding logical 
forms, which are transparent in logic, because they are defined by its gram-
mar. In language, however, logical forms are far from transparent, and no 
algorithm exists to determine them because they are not just a matter of 
grammar. They depend on the possibilities to which assertions refer. So too 
does validity, and it therefore can be decided only on a case-by-case basis. 
The model theory makes no use of logical form, but merely the grammatical 
structure of sentences, and it uses meaning, reference, and knowledge to 
modulate logical interpretations.

8.   INDUCTION AND ABDUCTION
 Modulation depends on knowledge, and so it is a bridge from deduc-
tion to induction. Inductive inferences yield specific conclusions, general-
izations, and, above all, explanations. They depend on knowledge and its 
availability (Tversky & Kahneman, 1973). An induction may yield a true 
conclusion; but it may not, even if its premises are true. The engineers in 
charge of Chernobyl induced that the reactor was intact after the explosion. 
Their inference was plausible because no nuclear reactor had ever melted 
down before. But, they were wrong, and their delay in making the correct 
inference cost lives. Induction is indeed risky.

Logic is “monotonic” in that further premises warrant further conclu-
sions, and no subsequent premise ever calls for a valid conclusion to be 
withdrawn—not even its direct contradiction. At Chernobyl as in daily life, 
individuals withdraw conclusions, even valid ones, in the light of subsequent 
information. Their reasoning is “nonmonotonic”. They withdraw some con-
clusions because they are based on assumptions made by default. They infer, 
say, that Fido has four legs because Fido is a dog and by default dogs have 
four legs, but then they discover that poor old Fido has only three legs. This 
process of withdrawing conclusions based on default assumptions is integral 
to the model theory ( Johnson-Laird & Byrne, 1991). But, retractions also 
occur in other cases. You believe, say, that if someone pulls the pistol’s trigger 
then it will fire. Someone pulls the trigger.  Yet, the pistol does not fire. Hence, 
there is a conflict between a valid inference from your beliefs—that the 
pistol fires—and the incontrovertible fact that it doesn’t fire. So, you have to 
withdraw your conclusion and modify at least one of your beliefs. Artificial 
intelligencers have devised various systems of nonmonotonic reasoning to 
deal with such cases, but these approaches have grown increasingly remote 
from psychological plausibility (see Brewka, Dix, & Konolige, 1997). In fact, 
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at the heart of human performance is the abduction of explanations that 
resolve inconsistencies (Johnson-Laird, Girotto, & Legrenzi, 2004). It is these 
explanations that, as a by-product, yield revisions to beliefs.

An inconsistent set of assertions is a potentially serious matter in daily 
life. For example, disasters at sea are often a consequence of a conflict 
between a mariner’s mental model and reality (Perrow, 1984). The ability to 
detect inconsistencies is accordingly one hallmark of rationality. Reasoners 
can do it by trying to construct a single model of all the relevant informa-
tion. If they succeed, they evaluate the information as consistent; but if they 
fail, they evaluate it as inconsistent (see Johnson-Laird et al., 2004, for cor-
roboratory evidence). Once they have detected an inconsistency, they can 
use their knowledge to try to explain it. The rest of this section focuses on 
such explanations, that is, abductions.

The basic units of explanations are causes and their effects. In the case of 
an inconsistency, the effect makes possible the facts of the matter. Accord-
ing to the model theory, causation refers to what is possible and to what 
is impossible in the co-occurrence and temporal sequence of two events 
(Frosch & Johnson-Laird, 2011; Goldvarg & Johnson-Laird, 2001). A com-
puter program implementing this account constructs mental models of the 
premises, as in the pistol example, detects the inconsistency, and uses its 
models of causal relations to build a chain resolving the inconsistency, for 
example, a person emptied the pistol and so there were no bullets in the pistol 
( Johnson-Laird et al., 2004). Such an explanation is bound to repudiate at 
least one previous belief, which reasoners can modify to refer to a situation 
that was once possible, but that did not occur, as in the counterfactual con-
ditional, if a person hadn’t emptied the pistol and there were bullets in the pistol then 
the pistol would have fired (see Byrne, 2005). Experimental evidence showed 
that individuals are usually able to create such explanations, which tend 
to refute the conditional premise ( Johnson-Laird et al., 2004). Individuals 
rate the cause and effect as more probable than either the cause alone or 
the effect alone—a fallacy in which a conjunction is wrongly judged to be 
more probable than its constituents (Tversky & Kahneman, 1983).

A study of abduction ( Johnson-Laird et al., 2004) examined such infer-
ences as:

If a pilot falls from a plane without a parachute then the pilot dies.
This pilot didn’t die. Why not?

Some participants made a valid deduction:
The pilot didn’t fall from a plane without a parachute.

But, other participants made explanatory abductions, such as:
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The pilot fell into a deep snowdrift and so wasn’t hurt.
The plane was on the ground and he [sic] didn’t fall far.
The pilot was already dead.

An inadvertent demonstration of the imaginative power of human abduc-
tions used pairs of sentences chosen at random from pairs of stories, also 
chosen at random (see Johnson-Laird, 2006, chap. 14). The result was pairs 
of sentences such as:

Celia made her way to a shop that sold TVs.
Maria had just had her ears pierced.

The participants’ task was to describe “what is going on” in such scenar-
ios. To the experimenters’ surprise, the participants were usually able to 
comply. The task was easier in another condition in which the sentences 
were edited minimally to ensure that they both referred to the same 
individual:

Celia made her way to a shop that sold TVs.
She had just had her ears pierced.

Typical examples of the participants’ responses in this case were:
She’s getting reception in her earrings and wanted the shop to investigate.
She wanted to see herself wearing earrings on closed-circuit TV.
She won a bet by having her ears pierced, using money to buy a new TV.

What was striking was how rarely individuals were stumped for an expla-
nation. Human reasoners are adept at abductions—they outperform any 
existing computer program. Their explanatory ability underlies supersti-
tions ( Johnson-Laird, 2006, chap. 14). It also underlies science, but scientists 
test putative explanations: they search for counterexamples.

A long-standing view of a rational reaction to inconsistency is encapsu-
lated in William James’s remark: “[The new fact] preserves the older stock 
of truths with a minimum of modification, stretching them just enough 
to make them admit the novelty” ( James, 1907, p. 59). Cognitive scien-
tists have often defended the same view (e.g. deKleer, 1986; Gärdenfors,  
1992; Harman, 1986; cf. Elio & Pelletier, 1997, for results to the contrary). 
Naive individuals, however, are much more concerned to explain incon-
sistencies because explanations can help them to decide what to do. They 
readily sacrifice minimalism for this goal. For instance, when reasoners are 
asked what follows from inconsistent premises, they spontaneously offer 
an explanation that resolves the inconsistency, and they judge that such 
explanations are more probable than revisions to the premises that restore 
consistency (Khemlani & Johnson-Laird, 2011). Once they have formu-
lated such an explanation, a striking phenomenon occurs. It becomes 
harder for them to detect the inconsistency in comparison with cases in 
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which instead of explaining the inconsistency, they rate which assertion 
is more surprising. They seem to have explained the inconsistency away, 
perhaps by reinterpreting the generalization in the premises as hold-
ing by default so that it is less vulnerable to contrary facts (Khemlani &  
Johnson-Laird, 2012b). In sum, reasoners are able to resolve inconsisten-
cies. They tend to do so by using knowledge to abduce causal models that 
explain the origins of the conflicts. This reasoning usually makes sense of 
the inconsistency, although on some occasions it fails to yield any expla-
nation whatsoever.

9.   PROBABILITIES: EXTENSIONAL AND INTENSIONAL
 Induction is often uncertain, and uncertainty implies probability. Indi-
viduals who know nothing of the probability calculus happily infer proba-
bilities. How they make such inferences should be part of a unified theory of 
reasoning. Following Tversky & Kahneman (1983), we distinguish between 
extensional reasoning in which the probability of an event is inferred from 
the different mutually exclusive ways in which it can occur and nonexten-
sional (intensional) reasoning in which the probability of an event is inferred 
from some relevant evidence or index. In principle, extensional reasoning 
is deductive, whereas nonextensional reasoning is inductive, and much of 
it, as Tversky & Kahneman (1973, 1983) showed, depends on heuristics. In 
daily life, probabilistic reasoning may mix extensional and nonextensional 
processes. Hence, we explain how the model theory applies to both of them.

Mental models represent possibilities, and so simple extensional inferences 
can be made on the assumption that each possibility is equiprobable bar-
ring evidence to the contrary (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & 
Caverni, 1999). The probability of an event is accordingly the proportion  
of models in which it holds. The theory allows that models can also be tagged 
with numerals denoting their probabilities. Similar principles underlie other 
theories of probabilistic reasoning (e.g. Falk, 1992; Shimojo & Ichikawa, 
1989). The model theory, however, assigns equiprobability, not to events but 
to models of events. Classical probability theorists, such as de Laplace (1995); 
(originally published in 1819), advocated an analogous principle of “indiffer-
ence”, but ran into difficulty because events can be partitioned in different 
conflicting ways (Hacking, 1975). Mental models merely reflect the probabili-
ties that the individual constructing them assigns to events: different individu-
als can therefore partition events in different ways without self-contradiction.

A simple extensional problem (from Johnson-Laird et al., 1999) is:
In the box, there is a green ball or a blue ball or both.
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What is the probability that both the green and the blue balls are there?
The mental models of the premise are:

Green

Green Blue

Blue

Hence, the equiprobability principle predicts correctly that individuals will 
tend to estimate the probability of green and blue as 1/3. But, a telltale sign 
of mental models is that individuals succumb to illusory inferences about 
probabilities. Here is an example:

There is a box in which there is at least a red marble or else there is 
a green marble and there is a blue marble, but not all three marbles. 
What is the probability that there is a red marble and a blue marble in 
the box?

The mental models of the premise represent two possibilities:

Red 

Green Blue 

They imply that the red and blue marbles cannot occur together, and so 
their probability is zero. And most people make this estimate. However, the 
disjunction means that when its first clause is true, its second clause is false, 
and it can be false in three ways:

Red Green ¬ Blue 

¬ Blue 

¬ Green Blue

¬ Green 

When the second clause of the premise is true, the first clause is false:

¬ Red Green Blue 

Hence, there are four distinct possibilities for what’s in the box, and, on the 
assumption of equiprobability, the probability of green and blue is, not zero, 
but 25%. The participants in an experiment performed much better with 
the control problems than with the illusory problems of this sort (Johnson-
Laird et al., 1999).

Author's personal copy



Toward a Unif ied Theory of Reasoning 25

The Psychology of Learning and Motivation, First Edition, 2014, 1-42

Turning to nonextensional reasoning, consider this question about a 
unique event:

What is the probability that Hillary Clinton is elected US President in 2016?
Some psychologists argue that such probabilities are meaningless because 
probabilities concern only the natural frequencies with which events occur 
(e.g. Cosmides & Tooby, 1996). However, naive reasoners are happy to 
make estimates for unique events, and, as we have observed, their estimates 
 correlate reliably over different contents, ranging from politics to climate 
(Khemlani et al., 2012). The psychological mystery about such estimates 
is what mental processes underlie them, and, in particular, where do the 
numbers come from?

We proposed a dual process theory (see Section 3) in which the intuitive 
system given, say, the question about Hillary, adduces evidence, such as: Hillary 
was a very effective Senator; and many effective Senators have become President. 
It uses a mental model representing this evidence to construct a primitive 
non-numerical representation of a degree of belief in the proposition. This 
iconic representation is akin to the following sort of diagram:

| −−−^         |

in which the left vertical represents impossibility, the right vertical rep-
resents certainty, and the pointer at the end of the line corresponds to 
the strength of the particular belief, such as, Hillary will be elected President. 
The intuitive system can translate this representation into the sorts of 
description that a non-numerate individual would use, such as: “it’s as 
likely as not”.

The deliberative system can map the degrees of belief represented in an 
icon into a numerical estimate. Because this system has access to working 
memory, it can carry out proper arithmetical operations. It can also try to 
keep track of the complete joint probability distribution (the JPD). Given 
two unique events, such as the election of Clinton in 2016 and the Demo-
crats gaining control of Congress, the JPD consists in the set of probabilities 
for each possible combination of the affirmations and negations of the rel-
evant propositions:

Hillary is President & Democrats control Congress 35%
Hillary is President & not (Democrats control Congress) 30%
Not(Hillary is President) & Democrats control Congress 15%
Not(Hillary is President) & not(Democrats control Congress) 20%

The JPD provides all the information needed to estimate any probability 
concerning the domain. There are many different sets of probabilities from 
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which the values of the JPD can be inferred. For instance, if you know the 
values of the three probabilities in each of the following triples then, in 
principle, you can infer that values of the probabilities in the JPD, where, 
say, A denotes “Hillary is President” and B denotes “Democrats  control 
 Congress”:

P(A), P(B), P(A and B)
P(A), P(B), P(A or B, or both)
P(A), P(B), P(A|B)

The last of these triples includes P(A|B), which is the conditional probabil-
ity of B on the assumption that A occurs.

Granted the limited ability of the intuitive system to carry out loops 
of operations (see Section 3), it is capable of only a small number of 
primitive analogs of arithmetical operations of the sort found in infants 
(Barth et al., 2006; Dehaene, 1997; Xu & Spelke, 2000) and adults in 
non-numerate cultures (Gordon, 2004). It can add two pointers, subtract 
one from another, take their mean, and multiply a proportion signified 
by one pointer by another—all within the bounds between certainty and 
impossibility and all in crude error-prone ways. The theory accordingly 
postulates that to estimate the probability of a conjunction of events, 
reasoners should tend to split the difference between them, but some 
may take the proportion of a proportion. The latter is a more complex 
operation (in terms of Kolmogorov complexity, see Li & Vitányi, 1997), 
and so it should tend to be used less often. Reasoners should likewise 
make analogous inferences in estimating conditional and disjunctive 
probabilities.

We implemented the intuitive and deliberative systems in a computer 
model and tested its predictions in experiments (Khemlani et al., 2012). 
The results showed that the participants concurred in the rank orders of 
their estimates of the probabilities of unique events. For example, they 
agreed that the US is more likely to make English the official language 
of the country (the average estimate was a probability of 46%) than to 
adopt an open border policy (an average estimate was a probability of 
15%). Hence, they are to some extent relying on knowledge and men-
tal processes in common. They tended to estimate the probability of a 
conjunction by taking the mean of their estimates of the probabilities of 
its conjuncts. This tendency was even evident in the overall means, for 
example, their mean estimate of the conjunction of the US adopting an 
open border policy and making English the official language was 26%, a 
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value falling between their mean estimates of the two conjuncts. It yields a 
violation of the JPD, that is, the negative probability in the third conjunc-
tion shown here:

English Open borders: 26%
English ¬ Open borders: 20%

¬ English  Open borders: -11%
¬ English ¬ Open borders: 65%

Violations of the JPD, however, were smaller when the conjunction came 
last as opposed to first in the sequence of judgments. When it was last, 
the participants had already made numerical estimates of the probabili-
ties of its conjuncts, and so they could use a deliberative procedure, such 
as taking a proportion of a proportion. This method is appropriate only 
for independent events, but a prior study established that they were not 
independent.

The model theory of probabilities dispels some common misconcep-
tions. Probabilistic reasoning isn’t always inductive. Extensional estimates 
can be deductively valid, but they can also yield illusory values. Likewise, 
nonextensional estimates of unique events depend on intuitions, and the 
resulting violations of the JPD suggest that the probability calculus is not 
native to human cognition. Individuals simulate events, but their restricted 
repertoire of intuitive methods leads them into error.

10.   MENTAL SIMULATIONS AND INFORMAL 
PROGRAMS

 Is there one sort of thinking that depends on mental simulation 
and that cannot be explained in any other terms? In our view, there is. 
It is the thinking that underlies the creation of algorithms and computer 
programs. Expert programming is an intellectual discipline that depends 

Figure 1.1 The railway domain with an example of an initial con!guration in which a set 
of cars is on the left side (a) of the track, the siding (b) can hold one or more cars while 
other cars are moved to the right side of the track (c).
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on knowledge of programming languages. Hence, our studies focused 
on how nonprogrammers formulate algorithms in everyday language 
(Khemlani & Johnson-Laird, 2013). To make the task easy, the programs 
concerned the railway domain shown in Figure 1.1. The participants had 
to rearrange the cars in a train on the left track using the siding so that 
they arrived on the right track in the required new order. In the termi-
nology of automata theory, the siding acts as a “stack” on which to store 
cars temporarily. Items on the siding move back to the left track, which 
therefore also functions as a stack. Automata with two stacks are equiva-
lent to Universal Turing machines. Hence, if cars can also be added and 
removed, the railway serves as a general-purpose computer (Hopcroft & 
Ullman, 1979).

Most people can solve rearrangement problems in the railway 
domain. They use a simple variant of “means-ends” analysis in which 
they work backward from the required goal, invoking operations rel-
evant to reducing the difference between the current state and the goal 
(e.g. Newell, 1990, Newell & Simon, 1972). For rearrangement prob-
lems, they need only envisage each successive car in the goal. Suppose,  
for instance, they have to rearrange the order ABCD into ACBD. The 
starting state is:

ABCD[ ]
where the square brackets denote the contents of the siding, which is 
empty at the start. Their immediate goal is to get D to the far end of the 
right track:

[ ]…D
So, they move D from left to right track:

ABC[ ]D
The next partial goal is to get B to the right track, and so they need to move 
C out of the way onto the siding:

AB[C]D
Now, they can move B to the right:

A[C]BD
They move C off the stack:

AC[ ]BD
The next move is intriguing. They should move both A and C together 
from left to right track. But, if reasoners perseverate, they may move only C 
to the right track. Their solution won’t be minimal because they then have 
to make a separate move of A to right track. Our initial study investigated 
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all 24 possible rearrangements of four cars, and the participants easily solved 
each of them, but they did tend to perseverate: every participant made one 
or more unnecessary moves.

In the principal experiment, the participants, who were not program-
mers, had to formulate algorithms for three sorts of rearrangement: reversals 
in which, say, ABCDEFGH on left track becomes HGFEDCBA on right 
track; palindromes in which, say, ABCDDCBA becomes AABBCCDD, and 
parity sorts in which, say,  ABCDEFGH becomes ACEGBDFH, that is, cars 
in odd-numbered positions precede those in even-numbered positions. 
Each solution calls for recursion, that is, a loop of operations. Primitive 
recursion in the theory of recursive functions corresponds to a loop car-
ried out for a given number of times, a so-called “for-loop”, whereas mini-
mization corresponds to a loop carried out while a given condition holds, 
a “while-loop” (see Rogers, 1967). While-loops are more powerful than 
for-loops because only they can compute certain functions. Indeed, when 
a while-loop is entered, there may be no way to determine how many 
times it will repeat before it yields an output or whether it will ever halt 
to yield an output. But, how do nonprogrammers formulate informal 
algorithms? The task isn’t deductive: they can deduce the consequences 
of a program, but they can’t create it using deduction alone (Kitzelmann, 
Schmidt, Mühlpfordt, & Wysotzki, 2002). Likewise, they don’t rely on 
probabilities any more than they do for Sudoku puzzles (Lee et al., 2008). 
The one viable method is to simulate a solution to a problem, observe 
what happens in the simulation, and translate these observations into a 
description. The simulation depends on a kinematic sequence of men-
tal models representing successive states of the world, real or imaginary 
(Johnson-Laird, 1983, chap. 15).

Let’s examine the process in more detail. The first step is to solve two 
different examples of the relevant rearrangement problem. Without two 
examples differing in numbers of cars, rearrangements are ambiguous. The 
solution to reversing a train of four cars is as follows:

ABCD[ ], A[BCD], [BCD]A, B[CD]A, [CD]BA, C[D]BA, [D]CBA,  
D[ ]CBA, [ ]DCBA

As this protocol illustrates, only three sorts of move are possible, and they 
occur in these summaries of simulations that solve reversals of trains of four 
and five cars:

S3 R1 L1 R1 L1 R1 L1 R1
S4 R1 L1 R1 L1 R1 L1 R1 L1 R1
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where “S3” means move three cars to the siding from left track, “R1” means 
move one car to right track from left track, and “L1” means move one car 
to left track from the siding. The second step uses the two summaries to 
work out the loop of moves they contain and any moves before or after it 
(pace Miller, 1974,1981; Pane, Ratanamahatana, & Myers, 2001). The loop 
in the simulations above is (R1 L1). But, how many times should it be iter-
ated? There are two ways to answer this question, depending on whether 
reasoners are formulating a while-loop or a for-loop. The simpler way is to 
observe the conditions in the simulation when the loop halts, which are 
respectively:

D[ ]CBA
E[ ]DCBA

The condition that halts the loop is that no cars are left on the siding, 
and so the while-loop should continue as long as the siding isn’t empty.  
The alternative is to compute the number of times that a for-loop should be 
executed. It calls for the solution of a pair of simultaneous linear equations 
to obtain the values of a and b in:

Number of iterations = a × length of the train + b.
The final step maps the structure of the solution into an informal descrip-
tion. We implemented this entire process in a computer program, which 
constructs programs for any rearrangement problem based on a single loop. 
It produces a for-loop and a while-loop in Lisp and translates the while-
loop into informal English. Each of these functions solves any instance of 
the relevant class of rearrangements. Table 1.1 presents its solutions for the 
three sorts of rearrangement: reversals, palindromes, and parity sorts.

If individuals use simulation to devise algorithms, then they should tend 
to use while-loops rather than for-loops because it is easier to observe the 
halting condition of a while-loop than to solve simultaneous equations. 
The overall difficulty of formulating an algorithm should depend on its 
Kolmogorov complexity, which is the length of its shortest description in 
a given language, such as Lisp (Li & Vitányi, 1997). A good proxy is the 
number of instructions. In Table 1.1, the functions for reversals and palin-
dromes call for four instructions, whereas parity sorts call for five instruc-
tions. Within a given level of complexity, another factor should also affect 
difficulty: the mean number of operands (i.e., cars) per move. This mea-
sure distinguishes reversals, which have 1.38 operands per move for eight 
cars, from palindromes, which have 1.75 operands per move for eight cars. 
Hence, the three sorts of problem should increase in difficulty from reversals 
through palindromes to parity sorts.
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Table 1.1 Loops for Computing Minimal Solutions to Three Sorts of General Problem: Reversals, Palindromes, and Parity Sorts Using “for”-
loops and “while”-loops and Their Informal Description (from the Output of the Computer Program mReasoner for Abducing them)

For-loops

While-loops

Lisp Informal English

a) Reversals (e.g., ABCDEFGH ⇒ HGFEDCBA)

(setf track (S (+ (*"1 len) -1) track))
(loop for i from 1 to (+ (*"1 len) -1)

do (setf track (R 1 track))
(setf track (L 1 track)))

(setf track (R 1 track))

(setf track (S (+ (*"1 len) -1) track))
(loop while (> (length (second track)) 0)

do (setf track (R 1 track))
(setf track (L 1 track)))

(setf track (R 1 track))

Move one less than the cars to siding.
While there are more than zero cars 

on siding.
Move one car to right track.
Move one car to left track.
Move one car to right track.

b) Palindromes (e.g., ABCDDCBA ⇒ AABBCCDD)

(setf track (S (+ (*"½ len) -1) track))
(loop for i from 1 to (+ (*"1/2 len) -1)

do (setf track (R 2 track))
(setf track (L 1 track)))

(setf track (R 2 track))

(setf track (S (+ (*"½ len) -1) track))
(loop while (> (length(first track)) 2)

do (setf track (R 2 track))
(setf track (L 1 track)))

(setf track (R 2 track))

Move one less than half the cars to 
siding.

While there are more than two cars 
on left track.

Move two cars to right track.
Move one car to left track.
Move two cars to right track.

(Continued)
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For-loops

While-loops

Lisp Informal English

c) Parity sorts (e.g., ABCDEFGH ⇒ ACEGBDFH)

(loop for i from 1 to (+ (*"½ len) -1)
do (setf track (R 1 track))

(setf track (S 1 track))
(setf track (R 1 track))
(setf track (L (+ (*"½ len) -1) track))
(setf track (R (+ (* ½ len) 0) track))

(loop while (> (length (first track)) 2)
do (setf track (R 1 track))

(setf track (S 1 track)))
(setf track (R 1 track))
(setf track (L (+ (* ½ len) -1) track))
(setf track (R (+ (* ½ len) 0) track))

While there are more than two cars 
on left track.

Move one car to right track.
Move one car to siding.
Move one car to right track.
Move one less than half the cars to 

left track.
Move half the cars to right track.

Table 1.1 Loops for Computing Minimal Solutions to Three Sorts of General Problem: Reversals, Palindromes, and Parity Sorts Using “for”-
loops and “while”-loops and Their Informal Description (from the Output of the Computer Program mReasoner for Abducing them)—(Cont’d)
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Our experiment corroborated the predictions. Individuals were able to 
create informal algorithms, even though they had no access to the railway 
domain while they carried out the task. They formulated algorithms for 
the three sorts of problems, once for trains of eight carriages, and once for 
trains of any length, in a counterbalanced order. Performance with trains 
of eight cars was at ceiling, but with trains of any length, it corroborated 
the predicted trend in accuracy and in time. Likewise, the participants used 
many more while-loops than for-loops. The use of while-loops correlated 
with accuracy, whereas the use of for-loops had a negative correlation 
with accuracy. Differences in ability were striking: the best participant 
was correct on every problem, whereas the worst participant was correct 
for only a third of the eight-car problems and for none of problems with 
trains of any length.

The ability to create algorithms is useful in daily life: loops of opera-
tions are ubiquitous in everything from laying a table to shutting down 
a nuclear reactor. Intelligent individuals are able to carry out this task, 
and our results corroborated an account that bases their thinking on the 
ability to make simulations. It is difficult to see how else they could cre-
ate programs.

11.   TOWARD A UNIFIED THEORY
 We have now described the main principles of the model theory, 
illustrated them in various sorts of reasoning, and outlined programs 
implementing special cases of the theory. But, these programs are a dozen 
separate pieces, often employing ad hoc notations, and so an urgent task 
is to integrate them. We have therefore begun to integrate the disparate 
parts within a single unified theory, implementing it in a large-scale 
computer program, mReasoner (available at http://mentalmodels.princ-
eton.edu/models/mreasoner/). The problem is to bring together various 
sorts of reasoning (e.g. relational, sentential, modal, causal, quantifica-
tional) with various sorts of task (e.g. formulating conclusions, evaluating 
given conclusions, evaluating consistency) in a way that predicts various 
sorts of phenomena (e.g. accuracy, latency, effects of modulation). Our 
aim here was to describe the more important insights that have emerged 
so far.

A mental model can represent the spatial relations among a triangle, 
circle, and square (as in Section 4), but the size of the figures, their distance 

Author's personal copy

http://mentalmodels.princeton.edu/models/mreasoner/
http://mentalmodels.princeton.edu/models/mreasoner/


P. N. Johnson-Laird and Sangeet S. Khemlani34

The Psychology of Learning and Motivation, First Edition, 2014, 1-42

apart, and so on, may not be intended to represent their real sizes or dis-
tances apart. Analogous issues occur with mental models of other sorts of 
assertion. For instance, a quantified assertion, such as:

Some of the actors are bakers
has the following sort of iconic model shown in this diagram of four 
 individuals:

Actor Baker 

Actor

Actor

Baker 

Baker 

The numbers of mental tokens in this case are not intended to represent 
the actual numbers of actors or bakers. Only the overlap between the two 
sets is iconic. When reasoners search for an alternative model of a set of 
premises, they can modify all but the essentials of a model. So, how does 
the system keep track of the essentials? A single uniform answer is that 
it relies on the meanings of assertions. Hence, mReasoner uses a gram-
mar, a lexicon, and a parser to construct representations of meanings, that 
is, intensional representations (for an account of their construction, see 
Khemlani, Lotstein, & Johnson-Laird, submitted for publication). They are 
then used to build extensional representations, that is, mental models. Both 
sorts of representations are crucial in reasoning, and to illustrate this point, 
we consider the intuitive and deliberative systems in reasoning from quan-
tified assertions.

The model theory treats the intensions of quantified assertions as rela-
tions between sets (see Boole, 1854; Cohen & Nagel, 1934). The advantages 
of this treatment are twofold. First, it dovetails with a long-standing treat-
ment of quantifiers in the model theory (Johnson-Laird, 1983, chap. 15): 
a set is represented iconically as a set of mental tokens, and a quantified 
assertion is represented as a relation between such sets. Second, it works for 
all quantifiers in natural language, including those such as “more than half 
of the artists”, which cannot be defined using the quantifiers that range 
over entities in logic (Barwise & Cooper, 1981). Here are some illustrative 
examples of this treatment of quantifiers, which the intensions of assertions 
capture:
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All A are B A  B (A is included in B.)

Some A are B A B (Intersection of A and
B is not empty.)

No A is a B A  B = (Intersection of A and
B is empty.)

Some A are not B A − B (Set of A that are not
B is not empty.)

Most A are B |A B|> |A − B| (Cardinality of intersection >
 cardinality of A that are not B.)

More than half the 
A are B 

|A B|> |A|/2 (Cardinality of intersection >
 ½ of cardinality of A.)

A corollary is that determiners, such as “most”, have parameters specifying 
such matters as the minimal cardinality of A, the cardinality of the  quantifier, 
“most A”, constraints on the relation between the two cardinalities, and  
so on.

The intuitive system can construct a model of an assertion and update 
the model according to subsequent assertions. Hence, given the premises of 
a syllogism:

Some of the actors are bakers.
All the bakers are colleagues.

It updates the model above to:

Actor Baker Colleague 

Actor

Actor

Baker Colleague 

Baker Colleague 

In general, affirmative premises are added so as to minimize the number 
of distinct sorts of individual, whereas negative premises are added so as to 
maximize the number of distinct sorts of individual.

Author's personal copy



P. N. Johnson-Laird and Sangeet S. Khemlani36

The Psychology of Learning and Motivation, First Edition, 2014, 1-42

Once the intuitive system has an initial model, it can draw a conclusion 
establishing a new set-theoretic relation, that is, a relation that is not asserted 
in the premises. In the past, the model theory has eschewed heuristics, but 
it now embodies them to frame both the quantifier in the conclusion (its 
mood) and the order of the terms that occur in it: “actors” and “colleagues” 
(its figure). When two premises differ in mood, one of them dominates the 
other in determining the mood and figure of the initial conclusion. The 
order of dominance reflects two principles governing valid inferences:

for instance, on “some”—can yield only valid conclusions that are par-
ticular.

The resulting order of dominance for syllogisms is accordingly:
Some _ are not _ > No _ are _ > Some _ are _ > All _ are_

In our example, the first premise is dominant: “artists” is its subject, and so 
“artists” is the subject of the conclusion, and the term in the other premise, 
“colleagues”, is in the predicate of the conclusion, that is, “some of the art-
ists are colleagues”. Analogous principles apply to other sorts of premise. 
They account for the well-known figural effect that occurs in syllogistic 
reasoning, for example, the tendency to infer the conclusion above rather 
than the converse, “some colleagues are artists” (see, e.g. Bucciarelli & Johnson-
Laird, 1999). The order of dominance is the same as the order invoked in 
Chater and Oaksford (1999) from probabilistic considerations. But, since 
our principles derive from valid inferences, and yield only conclusions that 
hold in initial mental models, they do not depend on probabilities. The heu-
ristics operate without storing any information in working memory, and so 
they are rapid, but fallible.

The deliberative system makes a recursive search for alternative mod-
els falsifying an initial conclusion. When the system finds a counterex-
ample, it formulates a new conclusion if one is possible or else declares 
that no definite conclusion follows about the relation between the end 
terms. It searches for counterexamples using the same operations as 
did participants working with external models in the form of cutout 
shapes (Bucciarelli & Johnson-Laird, 1999): adding a new individual to 
a model, breaking an individual into two, and moving a property from 
one individual to another. As a meta-analysis showed, the resulting the-
ory embodied in mReasoner outperforms all current theories of syllogis-
tic reasoning (see Khemlani & Johnson-Laird, 2012c; Khemlani et al., 
 submitted for publication).
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The implementation of the unified theory has so far focused on unique 
probabilities and quantified assertions. It draws its own conclusions from 
quantified premises, evaluates given conclusions about what is necessary or 
about what is possible, formulates counterexamples to putative conclusions, 
and evaluates whether or not a set of quantified assertions is consistent. It 
carries out these tasks using both the intuitive system, which builds initial 
models, and the deliberative system, which searches for alternative models. 
Hence, it is able to predict human inferences. It provides the beginnings of 
a unified computational account, which we are extending to accommodate 
sentential and relational reasoning.

12.   CONCLUSIONS
 The psychology of reasoning would have been simpler if human 
beings were logicians or probabilists. Logic and the probability calculus 
are not native mental faculties but cultural discoveries. Some individu-
als master these technologies; some do not. And, in our culture, most 
individuals have smatterings of them at best. As the model theory pre-
dicts, deductive and probabilistic inferences are difficult and fallible. An 
awareness of the occurrence of errors led Aristotle and his intellectual 
descendants to devise logical and probabilistic calculi. These technolo-
gies, however, are unlikely foundations for human reasoning. So, what is? 
We have argued that it is mental simulation. Reasoners build models of 
premises and base their inferences on them. This view seems undeniable  
for reasoning that creates informal algorithms. The evidence we have 
presented shows that it applies also to all the main domains and tasks of 
reasoning, from deductions based on sentential connectives to inductions 
about the probabilities of unique events. But, its manifold applications are 
a source of its main weakness—its potential disintegration into a bunch 
of separate subtheories. Their unification is viable because each subthe-
ory is constrained by the main principles of the theory. What is much 
harder is to implement a computer program that predicts the responses 
that reasoners make to any inferential task, but mReasoner is a step toward 
that goal.
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