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Immediate inferences from quantified assertions

Sangeet Khemlani1, Max Lotstein2, J. Gregory Trafton1, and P. N. Johnson-Laird3,4

1Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC,
USA
2Center for Cognitive Science, University of Freiburg, Freiburg, Germany
3Department of Psychology, Princeton University, Princeton, NJ, USA
4New York University, New York, NY, USA

We propose a theory of immediate inferences from assertions containing a single quantifier, such as: All
of the artists are bakers; therefore, some of the bakers are artists. The theory is based on mental models and
is implemented in a computer program, mReasoner. It predicts three main levels of increasing difficulty:
(a) immediate inferences in which the premise and conclusion have identical meanings; (b) those in
which the initial mental model of the premise yields the correct conclusion; and (c) those in which
only an alternative to the initial model establishes the correct conclusion. These levels of difficulty
were corroborated for inferences to necessary conclusions (in a reanalysis of data from Newstead, S.
E., & Griggs, R. A. (1983). Drawing inferences from quantified statements: A study of the square
of opposition. Journal of Verbal Learning and Verbal Behavior, 22, 535–546), for inferences to modal
conclusions, such as, it is possible that all of the bakers are artists (Experiment 1), for inferences with
unorthodox quantifiers, such as, most of the artists (Experiment 2), and for inferences about the consist-
ency of pairs of quantified assertions (Experiment 3). The theory also includes three parameters in a
stochastic system that predicted quantitative differences in accuracy within the three main sorts of
inference.

Keywords: Quantifiers; Logic; Mental models; Reasoning; Syllogisms.

Psychologists have studied quantifiers, such as, Some
of the actors, and All of the bakers, for over a century
(see, e.g., Störring, 1908). They have devised at
least 12 theories of inferences from pairs of quanti-
fied premises—that is, syllogisms of the sort that
Aristotle was the first to analyse. A recent meta-
analysis of seven of these theories showed that
none of them was exemplary; the other five theories
lacked sufficient information to be included in the

analysis (Khemlani & Johnson-Laird, 2012).
Psychologists accordingly do not yet fully under-
stand the mental processes underlying inferences
that hinge on quantifiers. Any comprehensive
theory, however, must also account for immediate
inferences from quantified assertions. For instance,
if you are told that none of the servers is a woman,
you might refrain from asking a woman for the
check. You have tacitly inferred:
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1. None of the servers is a woman.
Therefore, none of the women is a server.

The inference is valid—that is, its conclusion must
be true given that its premise is true: The con-
clusion holds in any case in which the premise
holds (Jeffrey, 1981, p. 1). Psychologists have
investigated these inferences for many years (e.g.,
Begg & Harris, 1982; Newstead & Griggs, 1983;
Wilkins, 1928), but again have yet to determine
how logically untrained individuals make them.
The present paper aims to solve this problem.

In what follows, we outline a theory of immedi-
ate inferences from quantified assertions, which is
based on mental models, and which includes
three stochastic parameters yielding quantitative
predictions about the accuracy of individual infer-
ences. We report the results of five experiments
testing the theory’s predictions. The first two are
due to Newstead and Griggs (1983), and we
carried out three further experiments testing new
predictions of the theory. It deals with quantifiers
of the sort that occur in syllogisms, but also with
unorthodox quantifiers, such as most of the chemists,
which are outside their scope. Finally, the paper
draws some general conclusions about human
reasoning from quantified assertions.

A model theory of reasoning with quantifiers

The theory of mental models—the “model” theory,
for short—is a general theory of reasoning, which
applies to any domain of reasoning, including infer-
ences that depend on quantifiers, on sentential con-
nectives, on spatial and other relations, and on
probabilities. It rests on several assumptions that
apply to reasoning in general (see Johnson-Laird,
2006, 2010; Johnson-Laird & Khemlani, 2014).
First, individuals use the meanings of sentences—
their “intensional” representations, which the
mental parser assembles—to construct models of
the “extensions” of the sentences—that is, the situ-
ations to which they refer. Each model represents
what is common to a distinct set of possibilities,
and so individuals judge that a conclusion is valid
if it holds in all their models of the premises.
Second, mental models represent assertions in as

iconic a way as possible. This concept, which is
due to the nineteenth-century logician Peirce
(1931–1958, Vol. 4), means that the structure of
a representation corresponds to the structure of
what it represents. Hence, as Peirce realized, the
representation yields conclusions about relations
not asserted explicitly in the premises. Third,
mental models of assertions represent what is true
at the expense of what is false. Mental models
therefore place a reduced load on working
memory, but reasoners go wrong with certain infer-
ences as a result of failing to represent what is false
(see, e.g., Khemlani & Johnson-Laird, 2009; Yang
& Johnson-Laird, 2000). Individuals tend to con-
struct just a single initial mental model, which
yields intuitive inferences, but, provided the task
is not too difficult, they may be able to construct
an alternative model. Inferences that depend on
such alternatives are more difficult (Johnson-
Laird & Khemlani, 2014).

We illustrate the theory as it applies to quanti-
fied assertions of the sort under investigation
here. These simple quantified assertions are
“monadic”—that is, they concern the properties of
entities rather than relations amongst them. The
three examples in (2) illustrate different sorts of
monadic assertion:

2a. All of the artists are Cubists.
2b. Most poets are obscure.
2c. Some of the musicians like John Cage.

The last of these examples, in fact, expresses a
relation, but it can be treated as monadic provided
that the validity of the relevant inference follows
from the treatment of the relation as a property,
likes–John–Cage(musician x) instead of its
decomposition into a relation (likes) with two argu-
ments (musician x, and John Cage).

Monadic assertions refer to relations between
sets of entities (see, e.g., Boole, 1854; Cohen &
Nagel, 1934, pp. 124–125). This conception
differs from psychological theories based on logic
(e.g., Rips, 1994). However, it is presupposed in
various diagrammatic theories (e.g., Ceraso &
Provitera, 1971; Erickson, 1974), in formal rules
for inferences about sets (e.g., Geurts, 2003;
Politzer, van der Henst, Luche, & Noveck,
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2006), and in mental models (Bucciarelli &
Johnson-Laird, 1999; Johnson-Laird & Byrne,
1991; Polk & Newell, 1995). These various
systems yield the same set of valid deductions.
However, we frame the present theory in terms of
mental models, because they lead to predictions
about errors that distinguish the theory from the
other accounts (Khemlani & Johnson-Laird,
2012). Theories relying on formal rules, either
logical (e.g., Rips, 1994) or set-theoretical (e.g.,
Geurts, 2003), have not yet been formulated for
immediate inferences, especially those depending
on unorthodox quantifiers and modal conclusions
about possibilities, and so it is unclear what predic-
tions such accounts would make about errors.

The quantifiers of first-order logic translate into
English roughly as: for any A and at least some A,
where A ranges over individual entities. We refer
to quantifiers such as All of the A, as “first-order”,
because they can be defined in terms of first-order
quantifiers. They yield four “moods” of monadic
assertions, which occur in classical syllogisms:

3. All of the A are B.
Some of the A are B.
None of the A are B.
Some of the A are not B.

In contrast, most of the A cannot be defined in
terms of first-order quantifiers (Barwise &
Cooper, 1981). We refer to this quantifier and its
cognates as “second-order”, because they can be
defined only in second-order logic, in which vari-
ables can range over individuals and sets of individ-
uals. We use the definite article in quantifiers, such
as, all of the artists, to establish that the relevant
individuals exist in the domain of discourse (cf.
Boolos, 1984; Johnson-Laird & Bara, 1984).

In immediate inferences based on first-order
quantifiers, there are four possible moods for the
premise, and eight sorts of conclusion (4 moods
by 2 figures, i.e., arrangements of terms in the
second premise, A–B, and B–A). There are three
principal inferential tasks. The first task is to infer
a conclusion about what is necessary, as in:

4. None of the artists is a baker.
Therefore, none of the bakers is an artist.

The second task is to infer a conclusion about what
is possible, as in:

5. All of the artists are bakers.
Therefore, possibly all of the bakers are artists.

The third task is to infer whether two assertions are
consistent with one another—that is, whether they
can both be true at the same time. A theory of
immediate inference needs to explain the ability of
individuals to make all three of these sorts of infer-
ence, and the relative difficulty of different inferences
within them, in terms of accuracy and latency. We
formulated such a theory based on mental models,
and we have implemented it in a Common Lisp
program, mReasoner. A text-file of its output and
its source code are available (http://mentalmodels.
princeton.edu/programs/mreasoner/). In what
follows, we first describe the three components of
the theory: (a) its use of intensional representations
to build mental models; (b) its use of mental
models to draw immediate inferences; and (c) its
revision of these models to construct alternatives in
deliberations about immediate inferences. It predicts
a trend in decreasing accuracy over three sorts of
monadic immediate inference, but models alone do
not make predictions about relative difficulty
within these sets of inferences. Hence, we then
introduce three stochastic parameters governing
models that yield such quantitative predictions in a
system that is also implemented in the mReasoner
program.

Intensional representations
The system for immediate inferences has access to
an intensional representation of a premise, which
captures its meaning in set-theoretic terms
(Khemlani & Johnson-Laird, 2013; Khemlani,
Trafton, & Johnson-Laird, 2013). A set-theoretic
semantics covers all monadic assertions, including
those based on second-order quantifiers such as,
most of the A. We list the five main sorts of quanti-
fied assertion under investigation with their infor-
mal set-theoretic meanings, which in all cases also
assert that As and Bs exist in the relevant sets:

6. All of the A are B: The set of As is included in
the set of Bs.
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At least some of the A are B: The intersection of
the sets of As and Bs is not empty.

None of the A is a B: The intersection of the sets
of As and Bs is empty.

At least some of the A are not B: The intersection
of the sets of As and not Bs is not empty.

Most of the A are B: The intersection of the sets
of As and Bs has a cardinality greater than
that of half the cardinality of the As.

An intension is a blueprint for constructing a
mental model, but it also constrains inferences.
For example, suppose that the assertion, All of the
A are B, is represented in a model of three
individuals:

7. A B
A B
A B

How in this case does the system avoid inferring
that three As are Bs? The answer is that the inten-
sion shows that the choice of three instances of A
was arbitrary, and it can be changed. In contrast,
a revision to a model cannot add an A that is not
a B, because that would violate the intension that
As are included in Bs.

Intensions, which the parser constructs, can
obviate the need for model-based inferences. If a
premise and a conclusion have identical intensions,
the conclusion obviously follows from the premises.
A numerical quantifier, such as, All three of the
Spartans, can be explicitly represented with three
tokens in a model, but that is out of the question
for the quantifier, All 300 of the Spartans. Its inten-
sional representation, however, allows the model-
building system to represent the tokens in the
model with a tag for the numeral 300. Readers
may wonder: Why not base all inferences on inten-
sions? In principle, it can be done (cf. Geurts, 2003,
p. 234; Oaksford & Chater, 2009, p. 83), but the
evidence counts against such systems and in
favour of iconic mental models. Formal rules do
not offer an account of systematic errors, and the
difficulty of inferences depends, not on the length
of proofs in a formal system, but on the number
of models (see Johnson-Laird & Khemlani, 2014).

Mental models
Monadic assertions have a single initial mental
model (an extensional representation), which rep-
resents iconically the relation between the relevant
sets. The intensional representation guides its con-
struction. These models are “canonical” in that they
satisfy the set-theoretic intension of the quantified
assertion but follow an overarching principle of par-
simony. They tend to represent as few different
sorts of individual as possible, with the proviso
that both sets referred to in an assertion are rep-
resented in the model. Canonical models have
lower entropy than noncanonical models and are
the “preferred” mental models (corroborated in
the domain of spatial inferences; see Jahn, Knauff,
& Johnson-Laird, 2007). Likewise, reasoners’
spontaneous diagrams and their manipulations of
external models corroborate the existence of cano-
nical models of quantified assertions (Bucciarelli
& Johnson-Laird, 1999). A canonical mental
model of the assertion, All of the A are B, represents
the two sets as coextensive, and most reasoners tend
to interpret the assertion in this way unless the
interpretation violates their knowledge of the two
sets:

8. All of the A are B: A B
A B
A B

Each row in this diagram represents an individual,
so the first row represents an individual who is both
an A and a B, the second row represents another
such individual, and so on. Table 1 shows the cano-
nical models for all the different sorts of quantified
assertion in the present studies: All of the A are B,
Some of the A are B, None of the A are B, Some of
the A are not B, and Most of the A are not B. It
also shows models representing noncanonical indi-
viduals too.`

The search for alternative models
Of course, initial mental models imply conclusions
that may not be valid—for example, the model (8)
for All of the A are B implies that all of the B are
A. The inference is intuitive, but invalid. Hence,
the theory allows that individuals can deliberate
and modify an initial model as long as the revision
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satisfies the intension. This idea, which contrasts
intuitions with deliberations, reflects a long-stand-
ing principle of the model theory (Johnson-Laird,
1983, chapter 6). In the case of the preceding infer-
ence from All of the A are B, deliberations can yield
an alternative model consistent with the premise’s
intension:

9. A B
A B
A B
¬A B

where ¬A B represents an individual that is not an
A but is a B. A study of the spontaneous use of dia-
grams in syllogistic reasoning demonstrated three
main search procedures (Bucciarelli & Johnson-
Laird, 1999), and we have implemented them in
mReasoner: The program can add new individuals
or properties to a model, break individuals with
multiple properties apart, and move properties
from one individual to another, if the result is
consistent with the premise’s intension (see
Khemlani & Johnson-Laird, 2013, Table 4).
Because (9) refutes the conclusion above, its infer-
ence is invalid.

The model theory predicts a general trend in
accuracy and latency in immediate inferences.
Inferences based on identical intensions should be
the fastest and most accurate; inferences based on
initial mental models should be intermediate in
speed and accuracy; and inferences based on
alternative models should be the slowest and least
accurate.

The stochastic system
The model theory predicts the preceding trend,
but it makes no quantitative predictions about
individual inferences. Readers may also suppose
that the theory postulates that reasoning is a deter-
ministic process—that is, it unfolds like clock-
work, and reasoners build the same models with
the same number of individuals with the same
properties, and so on, in an invariable process.
In fact, the theory makes no such assumption. It
presupposes that inferential processes are almost
always stochastic, and so as a consequence
models differ from one occasion to another in
the number of individuals that they represent
and the properties that they represent. We accord-
ingly formulated such a system, introducing sto-
chastic parameters governing the construction of
models and the search for alternatives. Our aim
in the first instance was to account for the distri-
bution of results in Newstead and Griggs’s (1983)
studies of immediate inferences, but we framed
the system in general terms so that in principle
it extends to new sorts of inference. If reasoners
are using mental models for immediate inferences
with quantifiers, what factors in general should

`
Table 1. The canonical models of monadic assertions, and examples

of noncanonical models, as constructed by mReasoner

Monadic assertion

An example

of a

canonical

initial

model

An example of

a

noncanonical

model

All of the A are B A B A B

A B ¬A B

A B ¬A ¬B

At least some of the A are B A B A B

A B A ¬B

A ¬B ¬A B

None of the A is a B A ¬B A ¬B

A ¬B A ¬B

¬A B ¬A B

¬A ¬B

At least some of the

A are not B

A ¬B A ¬B

A ¬B A ¬B

¬A B ¬A B

¬A B

Most of the A are B A B A B

A B A B

A ¬B A ¬B

¬A B

¬A ¬B

Most of the A are not B A ¬B A ¬B

A ¬B A ¬B

A B A B

¬A B

¬A ¬B

Note: Each row in a model denotes the properties of an

individual, and “¬” denotes the negation of a property.
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affect their performance with different sorts of
problem? In our view, there are three.

The first factor is the number of individuals that
they tend to represent in a model. This factor
matters because if a model of Some of the A are B
represents only three individuals, then it may
yield invalid inferences because it cannot represent
all four sorts of individual consistent with the
premise—for example, a model such as:

A B
A B
A¬B

supports the invalid conclusion: All of the B are A.
However, the mere number of individuals in a
model does not guarantee accuracy: As Table 2
illustrates, they could all be of the same sort.`

The number of individuals represented in a
model is likely to vary depending on several
factors—of which the most important is likely to
be the processing capacity of working memory.
The number could vary according to many possible
distributions, but the most plausible is a discrete
Poisson distribution, because it captures the prob-
ability of a given number of events within a fixed
interval of time or, in our case, a given number of

entities in a bounded space. Unlike a normal distri-
bution or the chi-squared distributions, it has the
further advantage of being specified by a single par-
ameter, λ, which states both its mean and its var-
iance. The distribution is discrete because a set of
individuals contains a discrete number of individ-
uals—for example, no model represents four and
a half artists. And it is “left-truncated”
(Deshpande, Gore, & Shanubhogue, 1995,
p. 199) because the quantifiers in our experiments
are plural and therefore call for at least two individ-
uals. Figure 1 shows the Poisson distributions for
various values of λ that seemed appropriate a priori.

The second factor is the proportion of atypical
individuals in a model. Reasoners tend to focus
on typical instances of an assertion, but their
reasoning is more accurate when they represent a
fuller set of possibilities. For any assertion, a
model is built from representations of individuals
either in the canonical set for the assertion or in
the full set of possible individuals consistent with
the assertion’s intension (see Table 1). The canoni-
cal set contains only typical instances, as shown in
the diagrams that participants draw and the exter-
nal models that they construct (e.g., Bucciarelli &
Johnson-Laird, 1999). The full set adds to them

`
Table 2. Examples of models of “All A are B” containing various numbers of individuals and various proportions of atypical—noncanonical—

individuals.

Number of individuals in the model (λ)

Presence of noncanonical individuals 2 3 4 5

None (ε = 0.0) A B A B A B A B

A B A B A B A B

A B A B A B

A B A B

A B

Some (ε = 0.5) A B A B A B

A B A B A B

¬A ¬B ¬A ¬B A B

¬A ¬B ¬A ¬B

¬A ¬B

Full set of possibilities (ε = 1.0) A B A B

A B A B

¬A B ¬A B

¬A B ¬A B

¬A ¬B
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KHEMLANI ET AL.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

41
 0

4 
M

ar
ch

 2
01

5 



other less typical instances. For example, the cano-
nical set for the assertion All of the A are B contains
only one sort of individual, A B, but the assertion’s
intension is consistent with two other possible sorts
of individual, ¬A B and ¬A ¬B; and only one sort of
individual is impossible, A ¬B. The parameter, ε,
fixes the likelihood of constructing a representation
based on the full set of individuals as opposed to the
canonical set. When ε = 0, the model is built from
canonical possibilities only, as in Table 1. When ε
= 1.0 (its maximum), the model is built from the
full set of possibilities. Table 2 illustrates models
containing various numbers of individuals (depend-
ing on λ) and of varying proportions of noncanoni-
cal individuals (depending on ε). Each of these
models satisfies the premise, because every A is
also a B. But the different variations permit differ-
ent immediate inferences.

The third factor is the probability that individuals
search for an alternative to their initial model. This
factor reflects the degree to which reasoners are able
to go beyond their initial intuitions and to deliberate
about possibilities. The initial mental model suffices

for many intuitive tasks, but, as we have illustrated,
a correct response may call for the construction of
an alternative model. For simplicity, the parameter,
σ, which is also in the unit interval [0, 1], sets the
probability that such a search is successful.

In order to model the quantitative differences in
the results of Newstead and Griggs (1983), we
implemented the three parameters in the
mReasoner program. The system first draws a
sample from a Poisson distribution with parameter
λ. It uses the sample, say, 3, to be the number of
individuals in the initial model. Each individual is
added progressively by drawing a random sample
from one of two sets: the canonical set of possibili-
ties, or the full set of possibilities consistent with
the premise, where the parameter, ε, sets the pro-
portional chance of sampling the set of full set of
possibilities. Figure 2 summarizes these steps.
The resulting model is scanned to draw or to evalu-
ate a conclusion. Finally, either the program
searches for an alternative model, which it finds,
with a probability set by the parameter, σ, or it
does not make such a search. As we show later,

Figure 1. Left truncated Poisson distributions for various values of λ. The distributions establish stochastically the number of individuals

represented in models. Grey bars indicate values that were truncated (0 and 1) because they are impossible for plural quantifiers.
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we use the program to simulate participants’ infer-
ences in order to find optimal settings that model
the quantitative differences among inferences.

A summary of the predictions
The model theory implies that there are three main
levels of difficulty in immediate inferences. The
easiest inferences should be those in which the

conclusion is identical to, or has an identical
meaning to, the premise. Reasoners do not even
need to construct a model of the premises to deter-
mine that the conclusion follows in these infer-
ences: The identity of intensional representations
suffices. These inferences are “zero-model”,
because they do not depend on any model of the
premise. The intermediate level of difficulty

Figure 2. The algorithm implemented in mReasoner for stochastically constructing initial mental models with λ= 4.1 and ε= 0.6. The system

first draws a sample from a Poisson distribution with parameter λ. It uses the sample (in this case, 3) to set the number of individuals in the

initial model. Each individual is added progressively by drawing a sample individual from one of two sets: the canonical set of possibilities, and

the full set of possible individuals consistent with the premise. The resulting model is scanned to draw an initial conclusion.
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should be those intuitive “one-model” inferences
that can be made from the initial model of the
premise. The most difficult level are those “mul-
tiple-model” inferences that depend on an alterna-
tive model of the premises. Reasoners are likely to
err by failing to search for an alternative model.
An alternative account, of course, would use
models to represent separate relations between the
sets so that, for instance, an assertion such as, All
of the A are B, would elicit two different models—
Examples (8) and (9)—from the start. A key pre-
diction of the present theory and its computer
implementation is therefore that individuals
should tend to err by basing their response on the
initial model of a multiple-model inference.

Previous studies suggest plausible constraints on
the values of parameters in the stochastic system.
Reasoners are likely to construct models containing
three to five individuals, as evinced in the diagrams
that participants draw in making syllogistic infer-
ences (Bucciarelli & Johnson-Laird, 1999). The
setting of the corresponding parameter, λ, for one-
model and multiple-model problems should there-
fore have a high probability of yielding such
numbers, and so its optimal value should be
between 3 and 5 for immediate inferences. The ε
parameter varies from 0 to 1:When it is 0, reasoners
only consider canonical possibilities, and when it is
1, they consider all possibilities. When reasoners
consider remote possibilities at the outset of model
construction, they should be accurate and fast; but,
across a wide swathe of inferential domains
(Johnson-Laird & Khemlani, 2014), remote possi-
bilities appear difficult for reasoners to consider.
Hence, the optimal value of ε for most domains
should be ,.5—that is, reasoners tend to focus on
canonical individuals. Of course, some tasks
should encourage reasoners to consider remote pos-
sibilities and call for higher values of ε. However,
values of ε values ..8 should be most unlikely,
because they would be contrary to the model
theory’s assumption that individuals rely on canoni-
cal models. An analogous argument can be made for
the σ parameter. When it is 0, reasoners should
accept almost every inference drawn from an initial
model as valid.When it is 1, reasoners should delib-
erate about every inference, invariably finding

alternative models if they exist. They should there-
fore be very accurate and very slow. However, the
σ parameter is likely to depend on the nature of
the inferential problems under investigation.
Simple problems, such as immediate inferences,
should yield values of σ around .5, because a search
for alternative models is not highly demanding.
More complicated inferences, such as those based
on three or more premises (see Ragni, Khemlani,
& Johnson-Laird, 2014), should call for signifi-
cantly lower values of σ in order to fit the data. In
sum, the success of the model theory in accounting
for general results has implications for the values
of the parameters likely to be optimal in accounting
for immediate inferences. The optimal value of λ
should be between 3 and 5, whereas lower values
should yield too few individuals in a model, and
higher values should yield toomany. The proportion
of canonical individuals in a model should call for an
optimal value of ε, .5. And the optimal value of σ
for the discovery of alternative models should be
around .5.

The empirical studies
The aim of the empirical studies that we report was
to test the model theory’s account of immediate
inferences. We begin with a reexamination of
data from two experiments in Newstead and
Griggs (1983) in which the participants drew con-
clusions about what is necessary given a quantified
assertion. We then report three new experiments.
Experiment 1 examined inferences about what is
possible given a first-order quantified assertion.
Experiment 2 examined inferences based on a
second-order quantifier, most of the A. Experiment
3 examined a different task in which the partici-
pants had to decide whether two assertions could
both be true at the same time. This task is equival-
ent to the assessment of the consistency of the two
assertions. It is intimately related to deduction, and
some logical systems test whether a deduction is
valid by assessing the consistency of the premises
with the negation of the conclusion (see, e.g.,
Jeffrey, 1981). The model theory provides an
obvious account of how individuals determine
whether or not assertions are consistent. They
attempt to form a model of them. If they succeed,
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they evaluate the assertions as consistent; otherwise,
they evaluate them as inconsistent. Other current
theories of reasoning, such as those based on
formal rules of inference (e.g., Rips, 1994) or on
probabilistic heuristics (e.g., Chater & Oaksford,
1999), have not yet explained how reasoners evalu-
ate consistency.

A reanalysis of Newstead and Griggs (1983):
Inferences about what is necessary

Newstead and Griggs (1983) reported two exper-
iments examining immediate inferences of con-
clusions that follow of necessity, such as:

10. All of the As are Bs
Does it follow that all of the Bs are As?

Their first experiment used assertions containing
letters, as in (10), and their second experiment
used assertions containing letters and assertions
containing terms such as “artists” and “beekeepers”.
Both experiments examined all 32 possible
immediate inferences based on four sorts of first-
order premise: All of the As are Bs, Some of the As
are Bs, None of the As are Bs, and Some of the As
are not Bs; and on eight sorts of conclusion: the
same four moods, but each with two orders of
terms in the conclusions: A–B, and B–A.

The model theory predicts that zero-model
inferences should be easier than one-model infer-
ences—that is, inferences in which the initial
model yields a correct evaluation, which in turn
should be easier than multiple-model inferences
in which only an alternative to the initial model
establishes the correct response. According to the
model theory, there are four zero-model inferences,
22 one-model inferences, and six multiple-model
inferences. Table 3 presents these 32 inferences,
their canonical mental models, and the percentages
of accurate responses in the two experiments. These
results corroborated the predictions of the model
theory. Their first experiment yielded the following
trend: 99% correct zero-model inferences, 78%
correct one-model inferences, and 55% correct
multiple-model inferences (Jonckheere trend test,
z = 2.70, p , .005, in a by-materials analysis).

The same trend occurred in the second experiment:
97% correct zero-model inferences, 76% correct
one-model inferences, and 58% correct multiple-
model inferences (Jonckheere trend test, z =
2.60, p , .005).`

We used the parameterized model to simulate
accuracy data for 1000 participants. We first ran a
“grid” search for optimal settings of the three par-
ameters—that is, an exhaustive search through
their possible settings guided by the participants’
data (see, e.g., Busemeyer & Diederich, 2010).
The large number of simulated participants
allowed the system to converge on stable quantitat-
ive values for the parameters. We then synthesized
a set of data based on these values and computed
two sorts of correlation between the synthetic
data and the results in Newstead and Griggs
(1983), one for the three different levels of infer-
ence (zero-, one-, and multiple-model inferences),
and one for the 32 individual inferences. Table 4
presents the parameter settings and goodness-of-
fit metrics for both sorts of correlation. Because of
the variability in multiple data points, the coeffi-
cient of determination is bound to yield mislead-
ingly low values for the 32 individual inferences
(Khemlani & Trafton, 2012; Roberts & Pashler,
2000, p. 363; Schunn & Wallach, 2005). Hence,
we report Pearson’s correlation coefficient, r, in
assessing the model’s fit with both the three sorts
of inference and the individual inferences. The
table reports the root mean squared error (RMSE)
for both sorts of comparison. The quantitative pre-
dictions of the computational model closely
matched the data over the three different levels of
inference (r = .98 and r = .96 for Newstead and
Griggs’s Experiments 1 and 2, respectively) and
over the 32 individual inferences (r = .75 and .78
for the two experiments). Appendices A and B
provide quantitative model fits for the three sorts
of inference and for the 32 inferences.`

The studies did not record latencies of correct
responses, but the accuracy results were sufficiently
convincing not to call for replication. In order to
test some new predictions of the theory, our exper-
iments examined some different sorts of immediate
inference.

10 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015

KHEMLANI ET AL.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

41
 0

4 
M

ar
ch

 2
01

5 



`
Table 3. The 32 problems for conclusions about what is necessary in Newstead and Griggs, along with the correct response, the number of models required

to obtain the correct response, a new model for a multiple-model inference, and the accuracy percentages in the two studies

First assertion (and canonical

initial model) Second assertion Correct response

No. of

models

Alternative

model

Newstead & Griggs (1983)

Experiment 1

accuracy percentage

Experiment 2

accuracy percentage

All of the A are B All of the A are B Necessary Zero — 100 98

A B

A B

A B

All of the B are A Not necessary Multiple A B

A B

¬A B

67 63

Some of the A are B Necessary One — 73 56

Some of the B are A Necessary One — 65 79

None of the A are B Not necessary One — 100 100

None of the B are A Not necessary One — 92 90

Some of the A are not B Not necessary One — 98 97

Some of the B are not A Not necessary One — 58 43

Some of the A are B All of the A are B Not necessary One — 100 83

A B

A ¬B

A ¬B

All of the B are A Not necessary One — 90 90

Some of the A are B Necessary Zero — 100 98

Some of the B are A Necessary One — 69 90

None of the A are B Not necessary One — 100 98

None of the B are A Not necessary One — 90 92

Some of the A are not B Not necessary Multiple A B

A B

A B

6 3

Some of the B are not A Not necessary Multiple A B

A B

A B

37 91

None of the A are B All of the A are B Not necessary One — 100 100

A ¬B

A ¬B

¬A B

All of the B are A Not necessary One — 98 95

Some of the A are B Not necessary One — 98 92

Some of the B are A Not necessary One — 79 67

None of the A are B Not necessary Zero — 98 94

None of the B are A Necessary One — 54 59

Some of the A are not B Necessary One — 69 59

Some of the B are not A Necessary One — 54 47

Some of the A are not B All of the A are B Not necessary One — 100 98

A ¬B

A ¬B

¬A B

All of the B are A Not necessary One — 87 89

Some of the A are B Not necessary Multiple A ¬B

A ¬B

A ¬B

17 8

Some of the B are A Not necessary One — 35 12

None of the A are B Not necessary Multiple A ¬B

A ¬B

A B

98 87

None of the B are A Not necessary Multiple A ¬B

A ¬B

A B

85 83

Some of the A are not B Necessary Zero — 98 98

Some of the B are not A Not necessary Multiple A ¬B

A ¬B

A B

35 19

Note: Newstead and Griggs (1983), Experiments 1 and 2.
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EXPERIMENT 1: INFERENCES
ABOUT WHAT IS POSSIBLE

The aim of this experiment was to test the model
theory’s predictions for inferences about what is
possible. A typical trial was:

11. All of the artists are bakers.
Is it possible that all of the bakers are artists?

As in Newstead and Griggs’s studies, the exper-
iment examined all 32 possible sorts of first-order
inference, and in this domain valid inferences
comprise four zero-model inferences, 12 one-
model inferences, 6 multiple-model inferences in
which the conclusion follows, and 10 multiple-
model inferences in which the conclusion does
not follow.

Method

Participants
Twenty-six participants completed the study on
Mechanical Turk for monetary compensation (see
Paolacci, Chandler, & Ipeirotis, 2010, for an analy-
sis of the validity of results from this platform).
None of the participants by their own account
had received any training in logic, and they were
all native speakers of English.

Design and materials
The participants carried out all 32 inferences based
on four sorts of premise (All of the A are B, At least
some of the A are B, None of the A are B, and At least
some of the A are not B) and 8 sorts of conclusion
(the four moods × two arrangements of the
terms: A–B, and B–A). For each inference, the par-
ticipants responded to a yes/no question about
whether a conclusion was possible. The contents
of the inferences were based on nouns referring to
common vocations. We devised a list of 32 pairs
of such vocations, which were assigned at random
to the inferences to make two separate lists of infer-
ences. The inferences were presented to each par-
ticipant in a different random order.

Procedure
The study was administered using an interface
written in PHP, Javascript, and HTML. On
each trial, participants read the premise, and,
when ready, they pressed a button marked
“Next”, which replaced the premise with a ques-
tion concerning the immediate inference, e.g.,
“Is it possible that all of the bakers are artists?”
They responded by pressing one of two buttons
labelled, “Yes, it’s possible” and “No, it’s imposs-
ible”. The program recorded whether or not
their response was correct and its latency (to the
nearest ms). The instructions stated that the task

`
Table 4. The experiments for which synthetic data generated by mReasoner were fitted, the logical task in the experiment, the values of the three

parameters in mReasoner, and metrics for their goodness of fit over the three different levels of inference and over the 32 individual inferences

Values of

mReasoner’s

parameters By problem type

By immediate

inference

Dataset Task λ ε σ r RMSE r RMSE

1. Newstead & Griggs (1983) Experiment 1 Necessity 4.0 .3 .4 .98 .12 .75 .21

2. Newstead & Griggs (1983) Experiment 2 Necessity 4.0 .3 .4 .96 .12 .78 .23

3. Experiment 1 Possibility 3.8 .2 .6 .99 .07 .62 .14

4. Experiment 2 Possibility 3.8 .4 .4 .99 .03 .85 .13

5. Experiment 3 Consistency 3.5 .6 .7 .99 .06 .63 .16

Note: The λ parameter stochastically varies the size of the mental model; the ε parameter specifies the proportion of individuals in a

model that correspond to a canonical mental model; and the σ parameter specifies the probability that the program carries out a

search for alternative models on any particular inference.
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`
Table 5. The 32 inferences yielding conclusions about what is possible in Experiment 1, along with the correct response, the number of models

required to obtain the correct response, a new model for a multiple-model inference, the accuracy percentage, and the mean latency

First assertion

(and canonical initial model) Second assertion Correct response No. of models Alternative model Accuracy percentage

Latency

(in s)

All of the A are B All of the A are B Possible Zero — 100 3.98

A B

A B

A B

All of the B are A Possible One — 88 5.25

Some of the A are B Possible One — 96 5.80

Some of the B are A Possible One — 96 6.01

None of the A are B Not possible One — 96 3.60

None of the B are A Not possible One — 81 6.71

Some of the A are not B Not possible One — 92 4.89

Some of the B are not A Possible Multiple A B

A B

¬A B

58 5.70

Some of the A are B All of the A are B Possible Multiple A B 69 5.67

A B A B

A ¬B A B

A ¬B All of the B are A Possible Multiple A B

A B

A B

73 5.32

Some of the A are B Possible Zero — 100 4.19

Some of the B are A Possible One — 100 4.75

None of the A are B Not possible One — 96 4.35

None of the B are A Not possible One — 96 5.71

Some of the A are not B Possible One — 96 4.85

Some of the B are not A Possible One — 96 5.91

None of the A are B All of the A are B Not possible One — 100 4.13

A ¬B

A ¬B

¬A B

All of the B are A Not possible One — 85 5.95

Some of the A are B Not possible One — 92 5.56

Some of the B are A Not possible One — 73 5.88

None of the A are B Possible Zero — 96 4.35

None of the B are A Possible One — 92 6.60

Some of the A are not B Possible One — 77 5.56

Some of the B are not A Possible One — 85 8.71

Some of the A are not B All of the A are B Not possible One — 85 5.60

A ¬B

A ¬B

¬A B

All of the B are A Possible Multiple A ¬B

A ¬B

A B

38 6.63

Some of the A are B Possible Multiple A ¬B

A ¬B

A B

92 4.72

Some of the B are A Possible Multiple A ¬B

A ¬B

A B

92 5.84

None of the A are B Possible One — 62 6.40

None of the B are A Possible One — 38 7.62

Some of the A are not B Possible Zero — 96 4.59

Some of the B are not A Possible One — 92 5.95
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was to respond to questions about a series of
assertions concerning what was possible given
the truth of an assertion. The participants
carried out three practice trials in order to fam-
iliarize themselves with the task before they pro-
ceeded to the experiment proper.

Results and discussion

Table 5 presents the percentages of correct
responses for all 32 inferences and the latencies of
the correct responses. The results corroborated
the theory’s predicted trend in accuracy: 98%
correct zero-model inferences, 84% correct one-
model inferences, and 71% correct multiple-
model inferences (Page’s trend test, L = 340.0, z
= 3.88, p , .0001). To assess that the trend did
not depend on just one sort of inference, we exam-
ined the pairwise differences between the accu-
racies. Participants made more correct responses
for zero-model inferences than for one-model
inferences (Wilcoxon test, z = 3.69, p , .0005),
and more correct responses for one-model infer-
ences than for multiple-model inferences
(Wilcoxon test, z = 2.73, p , .01).`

The mean latencies for correct responses
yielded an analogous trend: 4.26 s for zero-
model inferences, 5.26 s for one-model infer-
ences, and 5.11 s for multiple-model inferences
(Page’s trend test, L = 333.0, z = 2.91, p ,
.005). Pairwise analyses showed that zero-model
inferences yielded shorter latencies than one-
model inferences (Wilcoxon test, z = 3.72, p ,
.0002), but the difference in latencies between
one-model and multiple-model inferences was
not reliable (Wilcoxon test, z = .52, p = .60)
and in a direction opposite to the prediction.
The latencies therefore failed to reveal the differ-
ence in difficulty reflected in the accuracy data. It
may be that latencies are sensitive to more than
just the number of models necessary for an infer-
ence. Table 5 suggests one such factor: Five of
the 12 one-model inferences contained the nega-
tive quantifier, None of the __, whereas this quan-
tifier did not occur in the multiple-model
inferences. When inferences containing the quan-
tifier were dropped from the analysis, the mean

latency for one-model inferences fell to 5.04 s,
but the difference between the two conditions
was still not reliable (Wilcoxon test, z = 0.42,
p . .5).

We used the parameterized system to generate a
synthetic dataset of 1000 participants and to find
optimal settings for the three parameters: the size
of models, their canonicity, and the search for
alternative models. Table 4 presents the parameter
settings and their goodness-of-fit metrics both over
the three levels of inference (r= .99,RMSE= .07),
and over the 32 individual inferences (r = .62,
RMSE = .14). Appendices A and B provide quan-
titative model fits by the levels of inference and the
individual inferences.

EXPERIMENT 2: SECOND-ORDER
QUANTIFIERS

The previous tests of the theory have depended on
first-order quantifiers. Experiment 2 extended the
investigation to include the second-order quanti-
fier, most of the __, which cannot be defined using
the quantifiers of first-order logic (Barwise &
Cooper, 1981), and it examined immediate infer-
ences of conclusions about what is possible.

Method

Participants
Forty participants from the same population as
those in Experiment 1 were recruited on
Mechanical Turk.

Design, materials, and procedure
On each trial, participants evaluated an inference
based on a quantified premise and a conclusion
about a quantified possibility, for example:

12. Most of the artists are barbers.
Is it possible that all of the barbers are artists?

The experiment examined 32 sorts of inference,
consisting of a premise that was in one of four
moods: All of the A are B, Most of the A are B,
None of the A are B, and Most of the A are not B.
The conclusions were of the same sort, but also
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`
Table 6. The 32 inferences yielding conclusions about what is possible in Experiment 2 along with the correct response, the number of models

required to obtain the correct response, a new model for a multiple-model inference, the accuracy percentage, and the mean latency

First assertion

(and canonical initial model) Second assertion

Correct

response

No. of

models

Alternative

model

Accuracy

percentage

Latency

(in s)

All of the A are B All of the A are B Possible Zero — 98 5.72

A B

A B

A B

All of the B are A Possible One — 78 11.14

Most of the A are B Not possible One — 63 8.48

Most of the B are A Possible Multiple A B

A B

¬A B

80 8.22

None of the A are B Not possible One — 93 6.78

None of the B are A Not possible One — 93 9.71

Most of the A are not B Not possible One — 95 11.33

Most of the B are not A Possible Multiple A B

A B

¬A B

¬A B

¬A B

40 10.28

Most of the A are B All of the A are B Not possible One — 40 8.20

A B

A B

A ¬B

All of the B are A Possible One — 55 8.83

Most of the A are B Possible Zero — 100 6.46

Most of the B are A Possible One — 90 8.13

None of the A are B Not possible One — 90 7.87

None of the B are A Not possible One — 85 8.57

Most of the A are not B Not possible One — 93 6.20

Most of the B are not A Possible Multiple A B

A B

¬A B

¬A B

¬A B

40 15.69

None of the A are B All of the A are B Not possible One — 98 5.75

A ¬B

A ¬B

¬A B

All of the B are A Not possible One — 85 12.19

Most of the A are B Not possible One — 95 7.21

Most of the B are A Not possible One — 93 11.28

None of the A are B Possible Zero — 100 6.60

None of the B are A Possible One — 98 19.74

Most of the A are not B Not possible One — 40 11.57

Most of the B are not A Not possible One — 83 9.82

Most of the A are not B All of the A are B Not possible One — 90 8.80

A ¬B

A ¬B

A B

All of the B are A Possible One — 38 11.21

Most of the A are B Not possible One — 95 7.62

(Continued overleaf )
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varied in the order of the two terms. The contents
used the same list of 32 pairs of vocations as that in
Experiment 1, which were assigned at random to
the forms of inference for each participant. Each
participant received the inferences in a random
order.

Results and discussion

Table 6 presents the percentages of correct
responses for each of the inferences. The results
yielded the following trend: 99% correct zero-
model inferences, 85% correct one-model infer-
ences, and 67% correct multiple-model inferences
(Page’s trend test, L = 407.0 , z = 8.16, p ,
.0001). The participants were more accurate with
zero-model inferences than with one-model infer-
ences (Wilcoxon test, z = 5.31, p , .0001), and
more accurate with one-model inferences than
with multiple-model inferences (Wilcoxon test, z
= 4.75, p , .0001).`

Themean latencies for correct responses yielded a
reliable trend: 6.67 s for zero-model inferences, 8.61
s for one-model inferences, and 9.29 s for multiple-
model inferences (Page’s trend test, L = 500, z =
5.05, p , .0001). The zero-model inferences had
shorter latencies than the one-model inferences
(Wilcoxon test, z = 3.71, p , .0005), and the

one-model inferences had shorter latencies than
the multiple-model inferences, but the difference
was only marginally reliable (Wilcoxon test, z =
1.56, p = .06). But, when problems containing the
negative quantifier, None of the __, were excluded
from the analysis, the mean latency for one-model
inferences dropped to 8.06 s, and the difference
between one-model and multiple-model inferences
was reliable (Wilcoxon test, z = 2.26, p , .01).

As in the previous study, the parameterized
model was used to generate a synthetic dataset of
1000 participants and to carry out a search for
optimal settings for the three parameters. Table 4
presents these values and metrics of their good-
ness-of-fit both across the three sorts of inference
(r = .99, RMSE = .04) and across the individual
inferences (r = .85, RMSE = .13). Appendices A
and B provide quantitative model fits for the
three sorts of inference and the 32 individual
inferences.

In syllogistic reasoning, individuals use heuris-
tics that depend on the polarity of the premises—
that is, whether or not they are both affirmative
or contain at least one negative—and on the quan-
tifiers—that is, whether or not they are both univer-
sal (all and no) or contain at least one existential
(some), and on the arrangement of the terms in
the premises (see Chater & Oaksford, 1999;

Table 6. Continued

First assertion

(and canonical initial model) Second assertion

Correct

response

No. of

models

Alternative

model

Accuracy

percentage

Latency

(in s)

Most of the B are A Possible Multiple A ¬B

A ¬B

A ¬B

A B

A B

¬A B

40 8.21

None of the A are B Not possible One – 38 11.69

None of the B are A Not possible One – 53 19.91

Most of the A are not B Possible Zero – 100 7.25

Most of the B are not A Possible Multiple A ¬B

A ¬B

A ¬B

A B

¬A B

¬A B

93 10.93
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Khemlani et al., 2013). The present results
suggested that reasoners also rely on a heuristic
depending on polarity. When the premise and con-
clusion have the same polarity, affirmative or nega-
tive, participants tend to accept the conclusion as
possible; but otherwise they tend to reject it as
impossible (80% of all responses could be predicted
on this basis, Wilcoxon test, z = 5.52, p , .0001).
The model theory explains the origin of the heuris-
tic. The initial model of any sort of premise yields
only conclusions of the same polarity as the
premise. Individuals may therefore learn this
pattern. Those conclusions that do not hold in
the initial model, including those of a different
polarity, call for a search for an alternative model.
They are multiple-model deductions and are there-
fore difficult.

The results also showed that participants vacil-
late in their interpretation of “most”. Consider
this inference:

13. All of the doctors are golfers.
Is it possible that most of the doctors are
golfers?

Many participants rejected this inference, whereas
many accepted the converse inference from most
to the possibility of all. What is at stake here is
whether individuals accept the Gricean implicature
that most implies not all (see Grice, 1989). The
results suggest that naïve individuals tend not to
make the implicature: They accept that most does
not rule out all, but they do take all to rule out
most. However, not all participants concur, and so
no uniform view exists about the matter.

EXPERIMENT 3: JUDGEMENTS OF
CONSISTENCY

As we pointed out in the introduction, the evalu-
ation of the consistency of a set of assertions is
closely related to valid deduction. According to
the model theory, it calls for individuals to try to
construct a model of the assertions, and if they
can so then they evaluate the assertions as consist-
ent. In the case of a pair of assertions, if the
second assertion has the same meaning as the

first (a zero-model inference) then the task
should be the easiest of all, and if the second
assertion holds in the initial model of the first
assertion (a one-model inference) the task should
be easier than if the second assertion holds only
in an alternative model of the first assertion (a
multiple-model inference). The experiment
tested this predicted trend with the 32 possible
pairs of assertions. The model theory predicts
that four are zero-model inferences, 12 are one-
model inferences, and 6 are multiple-model infer-
ences (see Table 7). The remaining 10 inferences
are those in which the two assertions are inconsist-
ent.`

Method

Participants
Twenty-four participants from the same population
as before were recruited on Mechanical Turk.

Design, materials, and procedure
The experiment examined all 32 possible pairs of
quantified assertions: four sorts of first assertion,
All of the A are B, At least some of the A are B,
None of the A are B, and At least some of the A are
not B, and eight sorts of second assertion (the
same four moods and two orders of terms in the
second premise). Because naïve individuals are
often uncertain about the meaning of “consistent”,
the participants’ task was to answer an equivalent
question, “Can both of these statements be true at
the same time?” They responded by pressing a
button marked “Yes, they can” or “No, they
cannot”. Each participant received the 32 infer-
ences in a different random order. The experiment
used the same pairs of occupations as those in the
previous experiments.

Results

Table 7 presents the percentages of correct
responses and latencies for all 32 inferences in
Experiment 3. The participants were correct for
99% zero-model inferences, for 87% one-model
inferences, and for 74% multiple-model inferences
(Page’s trend test, L= 317.5, z= 4.26, p, .0001).

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015 17

IMMEDIATE INFERENCES

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

41
 0

4 
M

ar
ch

 2
01

5 



`
Table 7. The 32 inferences about the consistency of the assertions in Experiment 3, along with the correct response, the number of models
required to obtain the correct response, a new model for a multiple-model inference, the accuracy percentage, and the mean latency

First assertion
(and canonical initial model) Second assertion Correct response No. of models Alternative model Accuracy percentage

Latency
(in s)

All of the A are B All of the A are B Consistent Zero — 100 4.98
A B
A B
A B

All of the B are A Consistent One — 100 5.62

Some of the A are B Consistent One — 79 5.85
Some of the B are A Consistent One — 83 7.56
None of the A are B Inconsistent One — 100 4.86
None of the B are A Inconsistent One — 96 8.06
Some of the A are not B Inconsistent One — 96 8.24
Some of the B are not A Consistent Multiple A B

A B
¬A B

54 9.30

Some of the A are B All of the A are B Consistent Multiple A B
A B
A B

88 5.63

A B
A ¬B
A ¬B

All of the B are A Consistent Multiple A B
A B
A B

88 9.37

Some of the A are B Consistent Zero — 100 5.77
Some of the B are A Consistent One — 100 6.89
None of the A are B Inconsistent One — 100 5.93
None of the B are A Inconsistent One — 83 8.66
Some of the A are not B Consistent One — 100 6.92
Some of the B are not A Consistent One — 96 7.49

None of the A are B All of the A are B Inconsistent One — 100 5.42
A B
A ¬B
¬A ¬B

All of the B are A Inconsistent One — 88 9.33

Some of the A are B Inconsistent One — 96 6.28
Some of the B are A Inconsistent One — 79 8.47
None of the A are B Consistent Zero — 96 4.58
None of the B are A Consistent One — 96 5.90
Some of the A are not B Consistent One — 63 13.35
Some of the B are not A Consistent One — 83 8.80

Some of the A are not B All of the A are B Inconsistent One — 96 7.92
A B
A ¬B
¬A ¬B

All of the B are A Consistent Multiple A ¬B
A ¬B
A B

25 12.88

Some of the A are B Consistent Multiple A ¬B
A ¬B
A B

96 8.18

Some of the B are A Consistent Multiple A ¬B
A ¬B
A B

96 10.48

None of the A are B Consistent One — 75 9.42
None of the B are A Consistent One — 71 11.93
Some of the A are not B Consistent Zero — 100 6.34
Some of the B are not A Consistent One — 100 7.78

18 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2015

KHEMLANI ET AL.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
0:

41
 0

4 
M

ar
ch

 2
01

5 



The participants were more accurate with zero-
model inferences than with one-model inferences
(Wilcoxon test, z= 3.19, p, .005) and more accu-
rate with one-model inferences than with multiple-
model inferences (Wilcoxon test, z = 2.57, p ,
.05). Likewise, the mean latencies for the correct
“yes” responses were 5.43 s for zero-model infer-
ences, 6.91 s for one-model inferences, and 8.27 s
for multiple-model inferences (Page’s trend test,
L = 323, z = 5.05, p , .0001). The latencies for
zero-model inferences were shorter than those for
one-model inferences (Wilcoxon test, z = 4.05, p
, .0001) and shorter for one-model inferences
than for multiple-model inferences (Wilcoxon
test, z = 2.71, p , .01). Like the previous exper-
iment, the latencies for one-model inferences
dropped to 6.55 s when inferences that included
the negative quantifier, None of the __, were
removed from the analysis.

Once again, the parameterized model was used
to generate a synthetic dataset of 1000 participants
and to carry out a search for optimal settings for the
three parameters. Table 4 presents these values and
metrics of their goodness-of-fit both over the three
levels of inference (r = .99, RMSE = .03) and over
the 32 individual inferences (r = .63, RMSE =
.16). Appendices A and B provide quantitative
model fits by the levels of inference and the individ-
ual inferences. These results corroborated the
model theory’s qualitative and quantitative predic-
tions about the evaluation of the consistency of
pairs of quantified assertions.

GENERAL DISCUSSION

Aristotle was the first Western logician to formu-
late the logic of immediate inferences from quanti-
fied assertions, for example:

14. Some of the artists are bakers. Therefore,
some of the bakers are artists.

Yet, despite many years of investigation (e.g.,
Wilkins, 1928), no prior theory accounts for the
mental processes underlying inferences from them
about what is necessary, possible, or consistent.
Indeed, previous studies focused on the first task

alone (e.g., Begg & Harris, 1982; Newstead &
Griggs, 1983). A logical view of inference implies
the use of formal rules of inference for quantifiers,
but such theories have been framed only for the
first-order predicate calculus (e.g., Rips, 1994),
which treats quantifiers, such as for any artist, as
ranging over individuals. Syllogistic reasoning simi-
larly can be based on the properties of a single
representative individual (e.g., Politzer, 2011).
Quantifiers such as most of the artists, and fewer
than half of the artists cannot be defined in first-
order logic (Barwise & Cooper, 1981), and infer-
ences from them cannot be based on representative
individuals. They call for quantification over prop-
erties (second-order logic), or, equivalently for set-
theoretic relations, and theories of reasoning with
them need to take into account relations between
sets. Likewise, neither logical theories of reasoning
nor probabilistic theories (e.g., Oaksford & Chater,
2009) at present offer an account of how naïve indi-
viduals reason about possibility or consistency.

The model theory accounts for performance in
all these tasks with first-order and second-order
quantifiers, and its computational implementation
carries them out, yielding predicted errors and
correct performance. A conclusion about what is
necessary, possible, or consistent follows at once if
the conclusion is synonymous with the premise.
Otherwise, individuals construct a mental model
of the premise, and the conclusion about what is
necessary follows if it holds in this initial model
and in any alternative model. A conclusion about
what is possible follows if it holds in the initial
model, or, failing that, in an alternative model.
And assertions are consistent if and only if there
is a model in which they each hold.

The results of two experiments due to Newstead
and Griggs (1983) corroborated the predicted trend
in difficulty for inferences about what is necessary.
Zero-model inferences—those for which the
premise and conclusion were identical—yielded a
greater percentage of correct conclusions than
those for which the initial model—one represent-
ing only canonical individuals (see Table 1)—
yielded the correct conclusion, which in turn
yielded a greater percentage of correct conclusions
than those for which the correct conclusions
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depended on finding an alternative model, which
represents atypical (noncanonical) individuals con-
sistent with the meaning of the premise. With
inferences about what is possible, as in:

15. Some of the artists are bakers. Is it possible
that all of the bakers are artists?

the same trend occurred in both the accuracy and
speed of responses (Experiment 1).Models can rep-
resent the relations between sets needed for second-
order quantifiers, such asmost of the artists (Johnson-
Laird, 1983, p. 137 et seq.), and the same trend over
zero-, one-, andmultiple-model inferences occurred
with this quantifier in both affirmative and negative
premises (Experiment 2). The evaluation of the con-
sistency of pairs of quantified assertions, which our
participants carried out by answering the question
Can both of these statements be true at the same time?
also bore out the predicted trend in difficulty over
zero-, one-, and multiple-model inferences
(Experiment 3).

Four of the 32 inferences in each studywere “zero-
model” inferences—that is, inferences in which the
conclusion is identical to the premise. The equival-
ence obviates the need to build a model, and so the
model theory predicts that participants should be
the fastest and most accurate on zero-model infer-
ences. The robust trends of increasing difficulty
over zero-, one-, and multiple-model inferences did
not depend solely on the ease of zero-model infer-
ences. Reasoners are consistently more accurate for
one-model inferences than multiple-model infer-
ences, and they tend to have shorter latencies of
correct responses for one-model inferences than for
multiple-model inferences, especially when the nega-
tive quantifier, None of the __, is removed from the
analysis. In the resulting analyses, the difference was
not reliable in Experiment 1, but reliable in
Experiments 2 and 3.

The theory of mental models postulates that
the meanings of quantified assertions—their
intensions—can play a role in heuristics. The
present results may also reflect the use of heuris-
tics, and the possibility seemed very likely in
Experiment 2, which included assertions based
on the quantifier, most of the __. Participants
tended to accept a conclusion as possible only if

it had the same polarity, affirmative or negative,
as the premise. This heuristic, however, is compa-
tible with the model theory: The initial models of
premises yield as possible only conclusions of the
same polarity as the premise. Indeed, this factor
could explain how individuals acquire the heuris-
tic. A corollary is that those conclusions that are
possible, but that do not hold in the initial
model, call for a search for an alternative model,
and these multiple-model inferences are the
most difficult of all to draw.

When reasoners are given an inference with a
conclusion to be evaluated, they often work back-
wards by testing whether the given conclusion
follows from the premises (Van der Henst, Yang,
& Johnson-Laird, 2002). Participants in the
present studies may have used a similar strategy.
For example, given the following sort of immediate
inference:

16. All of A are B. Therefore, is it possible that
most of the B are not A?

Reasoners might build a canonical model of the
putative conclusion, such as:`

B ¬A

B ¬A

B A

The premise is true in this model, and so by
working backwards, the strategy requires only one
model in order to obtain the correct inference.
However, reasoners who work forwards will tend
to start with a canonical model of the premise,
such as:`

A B

A B

A B

They now need to search successfully for an alterna-
tive model in order to reach a correct conclusion.
The stochastic system could include different infer-
ential strategies, and it may then yield an even
closer fit to the data.

Could the stochastic system rely on a better set
of parameters than the present ones? The current
system uses two parameters to control the construc-
tion of models: The λ parameter constrains the
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number of individuals in a model, and the ε par-
ameter constrains the chances that the model rep-
resents atypical (noncanonical) individuals drawn
from the full set satisfying the premise. The σ par-
ameter constrains the chances that the system finds
an alternative to the initial model. The mathemati-
cian, von Neumann, remarked that with four par-
ameters he could fit an elephant, and with five he
could make it wiggle its trunk (Dyson, 2004). So,
the question is whether a smaller number of par-
ameters could fit the data as well. For example,
perhaps we could use ε parameter to select the pro-
portion of different individuals and then construct a
model with the smallest number of individuals that
can represent them all. However, we suspect that if
a stochastic system is to model syllogistic reasoning,
it may be necessary to split the σ parameter into
two, with one parameter determining whether indi-
viduals search for alternative models and another
determining the characteristics of the search
including the likelihood of it finding a refutation
of a putative conclusion. Although the present
system fitted the data well, its characteristic error
was to overestimate the accuracy of the participants’
performance, especially on problems concerning
negative assertions (see Appendix B). The one
exception to this trend is in the fit with
Experiment 2, which examined the quantifier,
Most of the _, and which did not include assertions
containing the quantifier, Some of the _. Hence, a
parameter concerning the different moods of asser-
tion might improve the system’s fit. It could be rel-
evant to a quantifier’s polarity in a conclusion, and
to the slower responses that None of the _ tended to
elicit in our studies.

In sum, the model theory explained the partici-
pants’ performance in making 160 separate
immediate inferences (32 inferences in five exper-
iments concerning what is necessary, possible, and
consistent). It predicted the participants’ relative
accuracy both over three main sorts of inference
(zero-, one-, and multiple-models) and over the
individual inferences in these sorts. It also predicted
the relative latencies of correct responses. Other
sorts of theory may be able to accommodate these
data, including the results with the unorthodox
quantifier, most of the _, and those in evaluating

the consistency of assertions. However, the theory
of mental models seems to be the only current
account that offers an explanation of the empirical
phenomena of immediate inferences with quanti-
fiers. It implies that naïve reasoners—those who
have not mastered logic or set theory—do not
manipulate the logical forms of premises, but
instead envisage the situations to which the pre-
mises refer. Reasoning is therefore mental simu-
lation rather than formal manipulation. Likewise,
if the theory is correct, probabilities govern the
process of reasoning with all, most, some, and
other quantifiers, and probabilities can be derived
from them (Khemlani, Lotstein, & Johnson-
Laird, 2014), rather than occurring as an intrinsic
part of their mental representation.
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APPENDIX A

The goodness of fit of the model theory for three sorts of inference in five experiments.

Figure A1. Observed (histograms with error bars) and predicted (circles) proportions of correct inferences for the three sorts of inference (i.e.,

zero-, one-, and multiple-model) across the five datasets under investigation. Error bars show 95% confidence intervals. RMSE = root mean

squared error.
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APPENDIX B

The goodness of fit of the model theory for the 32 individual sorts of inference in five experiments.

Figure B1. Observed (histograms and error bars) and predicted (circles) proportions of correct response for 32 immediate inferences across the

five data sets under investigation. Error bars reflect 95% confidence intervals. Black circles indicate when the predictions fell within the

confidence interval of the observed proportion of correct responses, while white circles indicate deviations from the predictions and the

observation. Premises and conclusions are stated using scholastic abbreviations, as follows: Aab = All of the A are B; Iab = Some of the A

are B; Mab = Most of the A are B; Eab = None of the A is a B; Oab = Some of the A are not B; Ma_b = Most of the A are not

B. Each inference is abbreviated as a premise concatenated with its putative conclusion, e.g., AabAba denotes the inference: All of the A are

B. Does it follow that all of the B are A?
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