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Abstract 

People reason about possibilities routinely, and reasoners can 
infer “modal” conclusions, i.e., conclusions that concern what 
is possible or necessary, from premises that make no mention 
of modality. For instance, given that Cullen was born in New 
York or Kentucky, it is intuitive to infer that it’s possible that 
Cullen was born in New York, and a recent set of studies on 
modal reasoning bear out these intuitions (Hinterecker, 
Knauff, & Johnson-Laird, 2016). What explains the tendency 
to make modal inferences? Conventional logic does not apply 
to modal reasoning, and so logicians invented many 
alternative systems of modal logic to capture valid modal 
inferences. But, none of those systems can explain the 
inference above. We posit a novel theory based on the idea 
that reasoners build mental models, i.e., iconic simulations of 
possibilities, when they reason about sentential connectives 
such as and, if, and or (Johnson-Laird, 2006). The theory 
posits that reasoners represent a set of conjunctive 
possibilities to capture the meanings of compound assertions. 
It is implemented in a new computational process model of 
sentential reasoning that can draw modal conclusions from 
non-modal premises. We describe the theory and 
computational model, and show how its performance matches 
reasoners’ inferences in two studies by Hinterecker et al. 
(2016). We conclude by discussing the model-based theory in 
light of alternative accounts of reasoning. 
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Introduction 
The word “possibility” is fraught with ambiguity, because 

philosophers distinguish between different sorts of 
possibility. An “alethic” possibility is any description that is 
not self-contradictory. “Deontic” possibilities are those that 
are permissible (e.g., instances of drinking alcohol when 
over the legal age restriction), and impossibilities are those 
that are prohibited (e.g., drinking while under the age 
restriction). Deontic possibilities can be violated, whereas 
alethic possibilities cannot (cf., Bucciarelli & Johnson-
Laird, 2005; Bucciarelli, Khemlani, & Johnson-Laird, 
2008). The present paper focuses on a different notion of 
possibility: “epistemic” possibilities concern possibilities 
that are consistent with a reasoner’s personal knowledge. 
Reasoning based on possibilities is referred to as “modal” 
reasoning, because when you assert that something is 
“possible”, you qualify its occurrence. Conventional 
systems of logic cannot take into account the logical 
properties of modals to draw conclusions, because they 

concern unqualified propositions that are either true or else 
false. Consider these two assertions: 

 
1a. Sarah is Egyptian. 
  b. Possibly, Sarah is Egyptian. 

 
Assertion (1a) is unqualified: it asserts a fact about Sarah. If 
it is true then Sarah is indeed an Egyptian, and if it is false, 
she is not an Egyptian. Assertion (1b) is subtler. In addition 
to facts and their negations, it introduces possibilities. 
Logicians have historically analyzed modal assertions as 
referring to a set of “possible words” (see Kneale & Kneale, 
1962; Portner, 2009). To say that something is possibly the 
case is to say that it is true in at least one possible world, 
and to say that something is necessarily the case is to say 
that it is true in all possible worlds. 

Many different systems of modal logic exist (Kaufmann, 
Condoravi, & Harizanov, 2006). Each adopts a different set 
of axioms that affect which inferences can be proved. 
Different axiom systems affect which modal inferences are 
valid and which are not (see, e.g., Kripke, 1963). An 
inference is valid if it yields a conclusion that is true in 
every case in which the premises are true (Jeffrey, 1981, p. 
1). In principle, an infinite number of modal logics exists, 
but logicians tend to focus on the axioms themselves, which 
run in parallel with semantic assumptions about the 
accessibility of one possibile world from another (Kripke, 
1963). For instance, the axiom: 

 
□A → A 

 
where ‘□’ is a symbol that stands for the logical notion of 
necessity, A is any proposition whatsoever, and ‘→’ denotes 
material implication. The axiom asserts that the necessity of 
A material implies A. The axiom does not hold in the modal 
logic “system K” (for “Kripke”), but it does hold another 
logic, “system T”, and it corresponds to the assumption that 
accessibility is reflexive, i.e., if a proposition is necessary in 
a world then it holds in that world. 

Here is a set of inferences that are invalid in all systems of 
modal logic: 
 

2a. A or B or both. 
  b. Therefore, possibly A. 
  c. Therefore, possibly B. 
  d. Therefore, possibly A and B. 



These inferences seem intuitively reasonable, but the 
conclusions (2b-d) are invalid in any modal logic. Suppose 
that A is impossible but B is true. In logic, the premise is 
true, but (2b) is false. So, the inference is invalid. Similar 
suppositions show that all the inferences are invalid, and so, 
no modal logic permits them. Why, then, are the inferences 
compelling – almost “obvious” – for humans?  

Despite some investigations into reasoning about 
possibilities (e.g., Bell & Johnson-Laird, 1998; Byrnes & 
Beilin, 1991; Goldvarg & Johnson-Laird, 2000; Inhelder & 
Piaget, 1958; Piéraut-Le Bonniec, 1980; Osherson, 1976; 
Sophian & Somerville, 1988), no comprehensive theory of 
human reasoning exists that explains how humans integrate 
reasoning about facts with reasoning about possibilities. The 
fundamental mystery is: where do the possibilities come 
from? Anecdotally, some researchers find that when 
participants are allowed to write or type out their own 
responses to a set of reasoning problems, they 
spontaneously qualify their inferences, e.g., by noting that a 
conclusion “is possible” or “could be true” or “might 
follow.” These responses are, of course, different ways of 
expressing modal conclusions. Other research finds that 
reasoners are capable of carrying out various modal 
reasoning tasks systematically, e.g., given a set of premises, 
they are able to determine whether a conclusion is necessary 
or possible (e.g., Bell & Johnson-Laird, 1998; Khemlani, 
Lotstein, Trafton, & Johnson-Laird, 2015; Newstead & 
Griggs, 1983). But only recently have researchers examined 
reasoners’ tendency to endorse modal conclusions from 
non-modal premises. Hinterecker and colleagues (2016) 
gave participants a battery of problems in which participants 
had to endorse or reject different conclusions from modal 
premises. Contrast this inference: 
 

  3. A or B or both. 
      Therefore, possibly A and B. 

 
with this one: 
 

  4. A or B, but not both. 
      Therefore, possibly A and B. 

 
Reasoners responded sensibly: they accepted (3) most of the 
time (82% of trials) but they accepted (4) on only a small 
minority of trials (10%; see Hinterecker et al., 2016, 
Experiment 1). But, both (3) and (4) are invalid in logic. 

Probabilistic logic 
Can Hinterecker and colleagues’ findings be explained by 

an alternative theory? The two inferences above may be 
treated more sensibly in probabilistic logic, hereafter, “p-
logic”, which is a formal system devised by Adams (1975; 
1988). P-logic reinterprets validity on probabilistic terms: a 
conclusion is probabilistically valid (p-valid) only if in any 
consistent assignment of probabilities its conclusion is at 
least as probable as its premises. Hence, in (3), the 
conclusion, possibly(A and B), does not rule out any cases, 

i.e., it can be true independent of whether A or B are true. 
The premise, A or B or both, in contrast, rules out the 
situation in which both A and B are false. And so, the 
conclusion has a probability greater than that of the premise 
in (3), and it is p-valid. In a similar vein, (4) is p-invalid 
because the probability of the conclusion, possibly(A and 
B), is 0 given the premise. And so, no matter what 
probability is assigned to the premise, the inference is p-
invalid. P-logic is central to recent probabilistic accounts of 
human reasoning known colloquially as the “new paradigm” 
(see, e.g., Evans, 2012; Oaksford & Chater, 2007; Over, 
2009; Johnson-Laird, Khemlani, & Goodwin, 2015). 

But, p-logic does not always make sensible predictions. 
For instance, it predicts that the following inference is p-
valid: 
 

  5. A or B, but not both. 
      Therefore, A or B, or both. 

 
The probability of the conclusion in (5) is greater than or 
equal to that of the premise, and so p-logic predicts that 
reasoners should make it. (The inference is always valid in 
logic.) Yet, participants rejected it on 97% of trials in the 
aforementioned study by Hinterecker and colleagues. 
Perhaps a deeper problem with probabilistic accounts is that 
they do not explain the provenance of modal conclusions, 
e.g., “possibly A”, from non-modal premises. Hence, an 
alternative account of reasoning is needed to explain modal 
inferences. 

A model-based theory of modal inference 
The mental model theory of reasoning – hereafter, the 

“model theory” – posits that reasoners draw conclusions by 
building and scanning iconic representations of possibilities, 
i.e., mental models (Johnson-Laird, 2006; Johnson-Laird & 
Byrne, 1991). The theory assumes that interpreting 
compound assertions such as those linked by the 
connectives and, or, and if, yields a set of discrete 
possibilities. Models mimic the structure of what they 
represent, i.e., they are iconic (Peirce, 1931-1958, Vol. 4). 
But, they can also contain abstract tokens, such as symbols 
denoting negations (Khemlani, Orenes, & Johnson-Laird, 
2012). They can represent temporal sequences of events as 
multiple models unfold in time the way events do 
(Bucciarelli, Mackiewicz, Khemlani, & Johnson-Laird, 
under review; Khemlani, Mackiewicz, Bucciarelli, & 
Johnson-Laird, 2013). 

The theory posits two primary systems for reasoning (see, 
e.g., Johnson-Laird & Steedman, 1978): a fast system builds 
mental models and scans them without the use of working 
memory. A slower system revises models and fleshes them 
out to yield a set of fully-explicit models. It also searches for 
alternative models consistent with the premises. It can 
correct the errors and biases that the fast system yields, but 
it is subject to the limitations of working memory. The 
difference between mental models and fully-explicit models 
is clear when reasoning about disjunctions, e.g., He has the 



soup or the salad or both. Mental models abide by a 
“principle of truth”, i.e., they represent what is true in a 
compound clause, and not what is false. They can flesh out 
the initial mental models to yield a set of fully-explicit 
models, i.e., possibilities that specify both what is true and 
what is false. The mental models of the disjunction above 
can be depicted in the following schematic diagram: 

 

   soup   
     salad 
  soup  salad 
 

Each row in the diagram denotes a different possibility. 
Hence, the first row denotes the possibility in which he has 
the soup. In contrast, a fully-explicit model represents both 
what is true in each possibility, as well as what is false: 
 

  soup ¬ salad 
 ¬ soup  salad 
  soup  salad 
 

Three primary findings support the model theory. First, 
inferences from one model are easier than inferences from 
multiple models (e.g., Johnson-Laird, Byrne, & Schaeken, 
1992). Second, because reasoners tend to build mental 
models instead of fully-explicit models, they are prone to 
systematic errors (see Khemlani & Johnson-Laird, 2017, for 
a review). Third, reasoners rely on counterexamples to 
correct erroneous inferences (e.g., Johnson-Laird & Hasson, 
2003). 

But, the theory has at least two serious shortcomings. 
First, it does not integrate facts and possibilities. As a result, 
it cannot explain the “obvious” inferences in example (2) 
above. Indeed, no theory of reasoning adequately integrates 
facts and modal reasoning, but the problem is particularly 
acute for the model theory, as the theory is based on the 
representation of possibilities, and so modal reasoning is 
within its purview. And second, its various computer 
implementations do not make quantitative predictions 
(Johnson-Laird & Yang, 2008). To rectify these 
shortcomings, we describe a novel assumption about the 
representation of mental models below, and then we present 
a new computational model capable of delivering 
quantitative predictions by varying how models are built 
and revised. 

The principle of conjunctive possibilities 
We amend the model theory to explain where possibilities 

come from in inferences that make no mention of them with 
the following principle: 

 
 

The principle of conjunctive possibilities: By 
default, compound assertions between clauses refer 
to conjunctions of possibilities. A clause can be 
evaluated as possible if it is affirmed in at least one 
possibility of the conjunctive set. It can be 
evaluated as necessary if it can be affirmed in all 
possibilities. And it is deemed factual if it is 
affirmed in a set of only one possibility. 

 

The principle posits that a disjunction, He has the soup or 
the salad or both, refers to a set of possibilities, i.e.: 
    

    possible( soup & ¬salad ) & 
    possible(¬soup &  salad ) & 
    possible( soup &  salad ) 
 

The addition of the principle solves two mysteries of modal 
reasoning: first, it explains why reasoners are apt to make 
modal inferences from non-modal assertions. If compound 
assertions refer to possibilities, then reasoning about 
possibilities is the default instead of an extension to more 
basic reasoning patterns (cf. Inhelder & Piaget, 1958). 
Second, because the principle is that possibilities are related 
through conjunction, it allows reasoners to conclude that 
any of the separate possibilities can be concluded as 
possible. An immediate consequence of the assumption is 
that modal inferences are the default, and reasoning about 
facts is a special case of reasoning about possibilities. 

The principle is presaged by recent ideas due to 
Zimmerman (2000), who proposed that disjunctions refer to 
lists of alternatives in a “possible worlds” semantics, and 
Geurts (2005) who extended the idea to disjunctions that 
concern facts. The principle we propose, however, applies to 
all sorts of sentential connectives, including disjunctions, 
conjunctions, conditionals, and even causal relations, e.g., 
causes, enables, and prevents (Johnson-Laird & Khemlani, 
in press; Khemlani, Barbey, & Johnson-Laird, 2014). 

The principle maintains the separation between mental 
models and fully-explicit models. Hence, it makes all of the 
same predictions as previous versions of the model theory. 
It also predicts that reasoners should deem (5) invalid, 
which we repeat here: 
 

  5. A or B, but not both. 
      Therefore, A or B, or both. 

 

Both a truth-functional analysis in logic and the notion of p-
validity in p-logic treats (5) as valid. But, if reasoners 
represent the exclusive disjunction as a conjunction of 
possibilities, i.e.: 
 

    possible( soup & ¬salad ) & 
    possible(¬soup &  salad ) 
 

then the conclusion does not follow from the representation, 
because nothing yields the possibility in which both cases 
hold. 

Nevertheless, the previous predictions are qualitative, not 
quantitative. A veridical simulation of human reasoning 
needs to provide a quantitative simulation of the extant data. 
To do so, we developed a novel computational 
implementation of the model theory, and we tested it against 
two experiments by Hinterecker et al. (2016). We now 
describe the computational model and its simulation of data. 

A computational implementation 
of the model theory 

We developed a computational theory of sentential 
reasoning  that  integrates  reasoning  about  facts  and  reas- 
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Figure 1. A schematic diagram of the computational model of 
reasoning. The system operates by parsing premises in natural 
language, constructing mental models and scanning them to 
formulate initial conclusions (system 1), and then searching for 
counterexamples and building fully-explicit models to interrogate 
initial inferences (system 2). 
 
oning about possibilities. It implements the principles of the 
mental model theory of reasoning (see, e.g., Khemlani &   
Johnson-Laird, 2013) and the principle of conjunctive 
possibilities introduced here. Figure 1 provides a schematic 
of the program. The computational model is structured 
around three general systems: 
a) A linguistic system uses a grammar and lexicon to parse 

verbal assertions. 
b) An intuitive system (System 1) uses the parse to 

construct an initial mental model, i.e., a conjunction of 
possibilities. It also scans the model to formulate initial 
inferences. 

c) A deliberative system (System 2) can flesh out the 
mental model and search for alternative models. This 
system can manipulate and update the representations 
created in System 1, and it can modify conclusions, but it 
too can fail when a problem calls for more working 
memory than it has (Khemlani & Johnson-Laird, 2017). 

In the computational model, system 1 does not have access 
to working memory, and so it can construct only one mental 
model at a time. It can flesh out the mental model to make it 
explicit. The probability of doing so is governed by a 
parameter, φ. System 2, however, has access to working 
memory. As a result, the operations of system 1 are faster 
and more prone to err than system 2. System 2 can operate 
on multiple models at a time, search for counterexamples, 
and construct a set of fully explicit models. The probability 
of calling system 2 is governed by a separate parameter, s. 
In principle, the size of working memory could also be 
governed by a parameter in order to model individual 
differences in reasoning.  

The system is capable of carrying out a number of 
inferential tasks, but for brevity, we consider just two: 

assessing that a given conclusion is possible, and assessing 
that it is necessary. In order to assess an inference, the 
computer model checks that each possibility in the 
conjunction corresponding to the conclusion is supported by 
the premises. If they all are, then the conclusion follows of 
necessity, and if at least one is, then the conclusion is a 
possibility. The concept of necessity may vary from 
participant to participant and from problem to problem: 
some problems may encourage reasoners to check that the 
models of the premises hold in all models of the conclusion 
(a strong notion of validity), and some problems may 
encourage reasoners to check only that all the possibilities to 
which the conclusions refer hold in the premises (a weaker 
notion of validity). Consider how you might respond to 
problems such as this one: 

 
  6. Suppose that: A or B, or both. 
      Does it follow that: A or B, but not both? 

 
The conjunctive possibilities to which the first premise 
refers are: 
 
    possible( A & ¬B ) & 
    possible(¬A &  B ) & 
    possible( A &  B ) 
 
And the possibilities to which the second premise refers are: 
 
    possible( A & ¬B ) & 
    possible(¬A &  B ) 
 
Reasoners with a strong notion of validity should judge that 
(6) is invalid, because the models of the premise do not all 
hold in the models of the conclusion. Reasoners with a 
weaker notion of validity should assess that (6) is valid, 
since the models of the conclusion hold in all the models of 
the premises. To simulate this non-determinism of human 
reasoning, we built a third and final parameter into the 
system, g, that denotes the probability of the system 
adopting a weak version of validity. 

We applied the computational model to simulate recent 
data on modal reasoning. The simulations show a close fit 
between the predictions of the system and humans’ 
inferential behavior after conservative parameter searching.  

Simulations of Hinterecker et al. (2016) 
We sought to use the computational implementation of the 
model theory to simulate participants’ performance in 
Experiments 1 and 3 in Hinterecker et al. (2016), as those 
two studies are directly pertinent to how reasoners draw 
modal conclusions from non-modal premises. In 
Experiment 1, Hinterecker and colleagues gave participants 
a battery of diagnostic problems that involve disjunctions. 
Two of those problems tested the tendency to draw modal 
conclusions from disjunctions that make no mention of 
possibilities, and two tested the ability to infer an inclusive 
disjunction   from   an   exclusive   one,   and   an   exclusive  
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Figure 2. Observed (histograms) data and predicted (circles) 
proportions of accepting the conclusion for different inferences. 
Top panel: inferences from Hinterecker et al. (2016, Experiment 
1). Bottom panel: inferences from Hinterecker et al. (2016, 
Experiment 2). For each of the problems, the assertion on top 
denotes the premise and the assertion on the bottom denotes the 
conclusion. 
 
disjunction from an inclusive one. Figure 2 summarizes the 
proportion of participants to accept the varying conclusions 
given the single premise. 

The only parameter that could have affected the system’s 
simulations on the problems in Experiment 1 was the g 
parameter, which dictates how probable it is for participants 
to make use of a weak notion of validity. An exhaustive 
exploration of the parameter space yielded an optimal g 
value of .75, i.e., the system optimally modeled the data 
when it stochastically applied weak validity to 75% of 
simulated problems. We generated synthetic data by running 
1000 simulations of the four inferences in Experiment 1. 
Figure 2 (top panel) shows the proportion of correct 
responses in the observations (histograms) and predictions 
(circles) in the study as a function of the inference. The 

computer model matched the participants’ performance in 
the experiment well (r = .99, RMSE = .10). The predictions 
of the computer model were in the 99th percentile relative to 
hypothetical datasets (Khemlani & Trafton, 2013). 

Hinterecker’s et al. (2016) Experiment 3 was a more 
stringent test of reasoners’ ability to infer modal conclusions 
from an inclusive disjunction, A or B or both. For each 
problem in the experiment, participants assessed the 
disjunction and then accepted or rejected the one of the 
following four conclusions: possibly A and B, possibly A, 
possibly B, possibly not-A and not-B. None of these 
inferences is valid in any known logic, but as Figure 2 
(bottom panel) shows, reasoners endorsed three of the four 
conclusions. We disabled all of the parameters to see how 
the computer model matched the participants’ performance; 
it did so extremely well (r = .99, RMSE = .12), and 
additional parameter manipulations would have resulted in 
only nominal changes to the fit. 

In sum, the computational model implementing the model 
theory and the principle of conjunctive possibilities yielded 
a close fit to the data from Hinterecker et al. (2016). 

General discussion 
Reasoners have no difficulty drawing modal conclusions 

from compound assertions that make no mention of 
modality. The ability to do so often seems “obvious”; only 
experts are likely to realize that this inference is invalid in 
logic: 

 

7. A or B or both. 
    Therefore, possibly A. 

 

No known logical system designed to deal with modalities, 
i.e., a modal logic concerning what is possible or necessary, 
permits the inference above. Reasoners naive to logic may 
also be surprised to find that both orthodox logic and 
probabilistic logic render the following inference valid: 
 

8. A or B, but not both. 
    Therefore, A or B, or both. 

 

On our account, reasoners are justified in feeling that the 
invalidity of (7) and the validity of (8) are counterintuitive 
and incorrect. The model theory of reasoning, which is 
based on possibilities (Johnson-Laird, 2006), treats 
compound assertions, such as conjunctions, conditionals, 
and the disjunctions in (7) and (8), as conjunctions of 
possibilities. Hence, reasoning about possibilities is 
fundamental. Reasoners represent possibilities directly, and 
so modal reasoning is a natural consequence of the way 
people represent assertions. 

The principle of conjunctive possibilities characterizes the 
inferences in (6) and (7) more intuitively: it predicts that (6) 
should be deemed valid and (7) should be deemed invalid. 
And a computational implementation of the principle makes 
identical predictions, which are validated by recent 
experiments on modal reasoning by Hinterecker et al. 
(2016). 



At present, no alternative theory of reasoning, whether 
based on mental logic (e.g., Rips, 1994) or on the 
probability calculus (e.g., Oaksford & Chater, 2007), can 
explain these phenomena of modal reasoning. Moreover, no 
computational model of reasoning, whether in psychology, 
artificial intelligence, or logic, characterizes the inferences 
in the same manner as the system we outlined above. The 
reason, as we argue, is that everyday reasoning is based on 
possibilities, not probabilities or truth-functions. 
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