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Abstract 
Reasoning concerns the cognitive processes by which people draw conclusions 
from the salient, meaningful pieces of information that they comprehend or 
observe. Reasoning processes are challenging to investigate because both their 
initiation and their final product (the inference), can be nonverbal and 
unconscious. This chapter summarizes recent developments in the science of 
reasoning. It briefly reviews the differences between “core” patterns of inference, 
i.e., deduction, induction, and abduction: deductions are inferences that are true 
in every case that the premises are true. Inductions concern all other sorts of 
reasoning. And abductions are special types of inductions that yield explanatory 
hypotheses. The chapter then addresses three fundamental debates that engage 
contemporary reasoning researchers. The first addresses how to separate 
rational from irrational deductions. The second concerns the relation between 
deduction and induction. And the third focuses on how people create 
explanations. The chapter concludes by addressing ways of making progress to 
a general, unified account of higher-level reasoning. 
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Introduction 
Good reasoning helps your survival, and bad reasoning prevents it. To 

make it easier to investigate reasoning behavior, theorists often lump inferences 
into different abstract domains (such as reasoning about morals and ethics, space 
and time, quantity and number, cause and effect). The compartmentalization often 
quarantines inferences from their contexts in daily life, but reasoning is as 
ordinary a mental activity as breathing is a physiological one, and it affects the 
daily decisions humans make. A mother “susses out” her child’s guilt from his 
stammered responses, and decides on a suitable punishment. A traveler figures out 
when to take a flight, how to get to and from the airport, and how much it will 
cost. A driver diagnoses a strange sound in his car as a mechanical problem. These 



may seem like prosaic inferences to make, but they concern morality, 
spatiotemporal relations, quantity, and causality. And, even in these narrow 
contexts, mistakes in reasoning can exact a heavy price: they can affect your 
relationships, your finances, and your safety. 

Reasoning describes the processes that occur between the point when 
reasoners attend to salient, meaningful information (linguistic or perceptual) and 
when they draw one or more conclusions based on that information. The processes 
are challenging to study because both their initiation and their product can be 
nonverbal and unconscious. Scientific investigations of reasoning began over a 
century ago, and over a few decades, they coalesced into a belief that was 
embodied in Inhelder and Piaget’s (1958, p. 305) claim that “[human] reasoning is 
nothing more than the propositional calculus itself.” The idea was that mature 
human reasoning is equivalent to symbolic logic, and so logic formed the basis of 
the first psychological accounts of reasoning (e.g., Braine, 1978; Johnson-Laird, 
1975; Osherson, 1974-1976). Logic does not explain mistakes in reasoning, and so 
proponents of a form of mental logic argue that erroneous inferences are rare and 
the result of simple malfunctions in an otherwise capable logical machine (Cohen, 
1981; Henle, 1978). Despite the prevailing theoretical consensus, the mid-20th 
century was a period of quiet confusion. An early pioneer in the field was the 
British psychologist, Peter Wason, who recognized that human reasoning diverged 
from logical competence. For one thing, some reasoning tasks revealed biased 
strategies in otherwise intelligent individuals (Wason, 1960). For another, 
reasoning seemed to differ from person to person (Wason & Brooks, 1979) and 
from problem to problem (e.g., Chapman & Chapman, 1959; Ceraso & Provitera, 
1971). And, a seminal breakthrough by Wason and his colleagues showed that the 
contents of a logical problem – i.e., the meanings of the words and their relations 
to one another – matter just as much as their formal structure (Wason & Johnson-
Laird, 1972; Wason & Shapiro, 1971). Logic, of course, deals primarily with 
formal structures, and it cannot explain human errors or strategies, so it could not 
account for any of these phenomena. 

The quiet confusion that marked the initial decades of the psychology of 
reasoning gave way to an upheaval of the foundations on which the field was built. 
Modern researchers are near unanimous in their belief that orthodox logic is an 
inadequate basis for rational inference (pace Inhelder & Piaget, 1954; see, e.g., 
Johnson-Laird, 2010; Oaksford & Chater, 1991), but the current era is one of 
controversy, flux, and shifting paradigms. Broad new frameworks of human 
rationality exist. One characterizes rationality as optimal reasoning under 
uncertainty, which is best formalized using the language of probabilistic inference 
(Oaksford & Chater, 2007, 2009; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 
2010). Another argues that the only way to explain the mental processes that 
underlie reasoning is by understanding how people build mental simulations of the 
world – mental models – in order to reason (Johnson-Laird, 2006; Johnson-Laird, 



Khemlani, & Goodwin, 2015).  Table 1 summarizes the differences between 
psychological accounts based on recent frameworks (mental logic, probabilistic 
logic, and mental models). The frameworks motivated the investigation of a wide 
variety of reasoning behaviors, such as spatiotemporal reasoning (e.g., Ragni & 
Knauff, 2013), reasoning about cause and effect (e.g., Waldmann, in press), and 
argumentation (e.g., Hahn & Oaksford, 2007; Mercier & Sperber, 2011). But the 
revised scientific view came at the cost of contentious debate: to overturn the view 
that people reason based on logic, there needs to be a replacement for logic, and 
psychologists disagree vehemently on what that replacement should be. 

Insert Table 1 about here. 
Nevertheless, there is reason for enthusiasm. The new frameworks provide 

varying perspectives on what the mind computes when it reasons and how it 
carries those computations out. Researchers increasingly rely on methodologies 
such as mathematical and computational modeling, eyetracking, neuroimaging, 
large sample studies, and process-tracing to develop and refine novel theoretical 
proposals. Debates about reasoning helped to motivate broad, architectural 
descriptions of higher-order thinking (e.g., Johnson-Laird, Khemlani, & Goodwin, 
2015; Stanovich, West, & Toplak, 2016; Tenenbaum, Kemp, Griffiths, & 
Goodman, 2011), and there exists hope in the field that the culmination of these 
new theories and methodologies will explain long-standing puzzles of human 
rationality. 

Perhaps that hope should be balanced by some pessimism, too. A 
fundamental problem that besets the community of reasoning researchers – and 
perhaps the experimental sciences more generally (see Greenwald, 2012)  – is that 
it is nearly impossible to eliminate a theory of reasoning. Consider one very small 
corner of the field: the psychology of syllogisms. Syllogisms are simple arguments 
that involve two quantified premises and a conclusion, e.g.: 

1. On some days, James doesn’t read the newspaper. 
               Every day James drinks coffee, he reads the newspaper. 
People can spontaneously draw a valid conclusion, i.e., one that must be true if the 
premises are true, from the premises, e.g.: 

   Therefore, James doesn’t drink coffee on some days. 
The first published experiment on human reasoning was conducted by Störring 
more than a hundred years ago, and it concerned syllogisms (Störring, 1908). 
Störring discovered that his (four!) participants took longer and used a greater 
variety of strategies for certain types of syllogisms (see Politzer, 2004, p. 213-
216). Hence, their data were reliable, predictable, systematic, …and perhaps worth 
investigating. 

In general, syllogisms are tractable to study because they consist of (only) 
sixty-four problems in their classical form. The early hope was that if reasoning 



researchers could concur on how humans solve these sixty-four problems, they 
could build outward to advance a more general theory of human reasoning. Thus 
far, there exist twelve different theories of the psychology of syllogisms, though 
each one fails to provide a complete account of syllogistic reasoning phenomena 
(see Khemlani & Johnson-Laird, 2012). No empirical result is compelling enough 
to convince adherents of any theory that their proposals should be abandoned. The 
problem is not isolated to reasoning about syllogisms: accounts of reasoning 
behaviors flourished in the last few decades across a variety of domains (e.g., 
causal, counterfactual, and moral reasoning), but few proposals are ever excised 
from discussion.  

New theories are healthy for a burgeoning field because they promote 
criticism, creativity, and debate. But genuine progress demands eventual 
consensus, and the existence of twelve competing scientific theories of a narrow 
corner of reasoning devoted to sixty-four problems portends a looming disaster, 
since every new theory makes it increasingly difficult to resolve broader 
arguments about the nature of reasoning. Let us, then, focus on the outstanding 
debates in the field with the goal of resolving them. 

This chapter highlights current controversies in the psychology of 
reasoning. The goal is not to be disputatious or to adjudicate the various debates; 
instead, it is to recognize that investigators of reasoning must soon resolve each 
controversy. Alas, the chapter stays silent on many recent and exciting trends in 
the investigation of human reasoning. For instance, little is said about analogical, 
numerical, or causal reasoning (e.g., Holyoak, 2012), or how animals and children 
learn to reason (e.g., Mody & Carey, 2016; Pepperberg et al., 2013), or how neural 
circuitry gives rise to higher-order inference (Goel, 2009; Prado, Over, & Booth, 
2011). A general survey of recent discoveries in the investigation of human 
reasoning processes may prove meandering, and so the overview is restricted to 
three separate debates: first, what counts as a rational deduction? Second, what is 
the relation between deductive and inductive reasoning? And third, how do people 
create explanations? Each of these questions corresponds to one of three core 
patterns of reasoning: deduction, induction, and abduction. The chapter starts by 
considering what is “core” about the three patterns. 

Core inference: Deduction, induction, 
and abduction 

Reasoning is a mental process that draws conclusions from the information 
available in a set of observations or premises. Aristotle recognized two different 
types of inference: deduction, which he examined through syllogistic reasoning, 



and induction, which he described as an inference “from the particular to the 
universal” (Topics, 105a13-19).  Since the advent of symbolic logic in the mid-19th 
century, the difference is more concrete, and the Aristotelian emphasis on 
particular and universal assertions no longer applies. What distinguishes the two is 
that deduction concerns conclusions that are valid, i.e., those that must be true “in 
every case in which all its premises are true” (Jeffrey, 1981, p. 1). Induction 
concerns arguments whose conclusions need not be true when the premises are 
true. Inductions often describe inferences that are reasonable, typical, or plausible. 
The two can be distinguished by the way they treat semantic information (Bar-
Hillel & Carnap, 1954; Johnson-Laird, 1983), which describes the number of 
possibilities that a set of assertions eliminates. An assertion that eliminates many 
possibilities, e.g., 

The butler (and nobody else) committed the murder. 
is more informative – and less probable (see Adams, 1998) – than one that allows 
for additional possibilities, e.g., 

The butler, the chef, or the chauffer committed the murder. 
Inductive conclusions increase semantic information, i.e., they eliminate more 
possibilities than the premises allow, whereas deductive conclusions maintain 
semantic information, or even reduce it. Consider the inductive conclusion in this 
inference: 

2. The housing market crashes. 
    The derivatives market crashes. 
    Therefore, the stock market will also crash.   (induction) 

The two premises do not necessarily imply that the stock market will crash, but the 
conclusion eliminates the possibility that the housing and derivatives markets 
crash in isolation, so it is more informative than the premises. In contrast, this 
inference: 

3. If the housing market crashes, then the stock market will also crash. 
               The housing market crashes. 
               Therefore, the stock market will also crash.   (deduction) 
is a deduction: its conclusion is if its premises are true. The conclusion explicitly 
articulates a consequence that is implicit within the two premises, which is another 
way of saying that it maintains the semantic information in the premises.  

Many sets of valid deductions have the same sentential structure. For 
instance, the deduction above is an instance of the following structure: 

4. If A then B. 
               A. 
               Therefore, B. 



which is a pattern of inference in sentential logic known as “modus ponens”. 
Modus ponens hinges on the meanings of the logical connective if…then…. Other 
logical connectives are and, or, and not. These logical connectives can be used to 
combine sentences whose meanings are elusive, e.g., 

Either Charvaka is right or else if Jainism is wrong then Buddhism is right. 
A reasoner does not need to know the central claims of the Charvaka, Jainists, or 
Buddhists to draw conclusions from the statement above. (Consider what you 
might conclude if you learned that, in fact, Charvaka is wrong.) In contrast, 
inductive inferences resist analyses based on their logical structure alone: 
reasoners who draw the inductive conclusion in (2) do so based on their 
background knowledge of housing markets, derivatives markets, and stock 
markets, and the possible interrelations between them (but cf. Collins & 
Michalski, 1989). 

Abduction is a special kind of induction that yields a hypothesis to explain 
the premises. This is an example of an abductive inference: 

If the housing market crashes, then the stock market crashes. 
           The housing market crashes. 
           Therefore, mortgage defaults caused the crashes.  (abduction) 
The inference is inductive, because the truth of the premises does not guarantee 
the truth of the conclusion (it is possible that the housing market crashed in the 
absence of mortgage defaults). But it is also abductive because it yields a causal 
explanation for the housing market crash, namely that it was caused by mortgage 
defaults. Abductions, like inductions in general, are difficult to analyze based on 
their structure alone – but recent theorists have proposed structural preferences in 
abductive inference, such as a tendency to prefer explanations with simpler causal 
structures over more complex ones (Lombrozo, 2016; but cf. Zemla et al., in 
press). 

Deductive, inductive, and abductive inferences are a convenient taxonomy 
with which to organize different patterns of reasoning, though reasoners make all 
three sorts of inference in daily life, often in tandem with one another. Consider 
this line of reasoning: 

5. If the housing market crashes, then the stock market will crash. 
               The housing market crashes. 
               Therefore, the stock market will crash.    (deduction) 
               And so, unemployment will rise.    (induction) 
               And perhaps consumer debt caused the housing market to crash.  
          (abduction) 
The reasoner deduces that the stock market must crash, induces the effect of the 
crash on the economy, and attempts to explain the downturn. Like other forms of 
thinking, psychologists can only analyze inferences through indirect means, and 



researchers have no tools with which to definitively characterize any particular 
inference “in the wild”. Hence, it is impossible to argue that any pattern of 
reasoning is more prevalent than any other (pace, e.g., Dewar & Xu, 2010; 
Oaksford & Chater, 2009; Singmann, Klauer, & Over, 2014). Reasoners often 
draw a combination of deductive, inductive, and abductive conclusions from given 
information, and inferences can depend on both the grammatical structure and the 
content of the information in the premises. 

The taxonomy above is useful in characterizing the information contained 
in the conclusions that reasoners draw. It does not, however, reveal whether those 
conclusions were rational or not. Was it rational to infer that the stock market 
crashes in (5)? Was it similarly rational to infer that consumer debt caused the 
market crash? Rational inferences circa 1950 was uncontroversial – it referred to 
the kind of rationality sanctioned by symbolic logic. But logical rationality fails as 
an account of human rationality, and cognitive scientists have searched for 
alternative ways to characterize rational thought and to identify faulty reasoning. 
The next section explores the debate over what makes deductions rational. 

What counts as a rational deduction? 
Does it matter that some of our inferences are faulty? One line of argument 

holds that if reasoning mechanisms contain fundamental flaws, it would have been 
impossible to overcome the gauntlet of natural selection. Cohen (1981, p. 317) 
argued that reasoning mistakes are the “malfunction[s] of an information-
processing mechanism,” and reasoners “have to be attributed a competence for 
reasoning validly, [which] provides the backcloth against which we can study 
defects in their actual performance.” In other words, mistakes are mere kinks in an 
otherwise error-free system. A consequence of this view is that mistakes should 
pose few impediments to survival. They may be infrequent in everyday inference, 
just as optical illusions – while informative to vision scientists – do not undermine 
our ability to cope. 

The view flies in the face of intuition, because acute errors in reasoning 
spark controversies in every major social and political debate. Poor reasoning can 
yield dangerous physical, social, and financial consequences. As the Scottish 
journalist Charles Mackay recounted, tulips were the most expensive objects in the 
world during the Dutch tulip mania (Kindleberger, 1978; Mackay, 1869), a bizarre 
outcome of the erroneous inductive inference that the value of tulips would 
continue to increase into the foreseeable future. The inference bears close 
resemblance to the fallacious belief that housing prices will continue to increase 
(Case, Shiller, & Thompson, 2012). And just as Dutch commerce suffered in the 
17th century when the tulip bubble collapsed, the housing bubble and subsequent 



global financial crisis in the early years of the present century plunged many 
countries into economic crises. It may be challenging, in the face of such dramatic 
examples of irrational inferential exuberance, to argue against the idea that human 
reasoning contains flaws. 

A major debate over rationality addresses, not the existence of systematic 
errors in reasoning, but rather their psychological antecedents (see, e.g., Oaksford 
& Hall, 2016; Khemlani & Johnson-Laird, in press). Psychologists debate what 
counts as a mistake in reasoning, as well as whether people are generally optimal 
reasoners or not (Marcus & Davis, 2013). Until recently, logical validity seemed 
to be the only metric of human rationality. Logic concerns inferences that can be 
made with certainty, and in this section, I explain how logic gave way to thinking 
about reasoning as inherently uncertain. 

Logic and its limitations 
Theories of deduction no longer posit that reasoning and logic are identical 

– nevertheless, logic is central to inferences in mathematics, science, and 
engineering. It eschews the imprecision and vagueness of natural language, and as 
a result, its principles form the bedrock of computability theory (Boolos & Jeffrey, 
1989; Davis, 2000; Turing, 1937). Provided that you can translate a statement in 
natural language into a logical expression, logic provides a way of deriving new 
expressions, all of which are also true. For example, you might translate the 
following statements: 

Juan eats an apple or he eats biscotti or he eats both. 
           If Juan eats an apple, then he does not eat biscotti. 
into logical expressions using sentential logic, a type of logic that concerns 
inferences from categorical sentences (often symbolized as capital letters, e.g., A, 
B, C) that are combined through operators (e.g., ‘&’, ‘v’, ‘®’, and ‘¬’, which are 
logical analogs of “and”, “or”, “if…then”, and “not”, respectively). Sentential 
logic, like most logics, has two parts – a model theory and a proof theory. Model 
theory defines the meanings of the symbols by the truth conditions that render 
them true, often illustrated through truth tables, while proof theory describes a set 
of rules that operate over the symbols independent of what makes them true or 
false. Table 2 provides an overview of some of the compound sentences and their 
corresponding truth tables. In sentential logic, proof theory and model theory 
coincide: any conclusion that can be derived through syntactic transformations 
(proofs) can also be derived through semantic analysis (models). The English 
sentences above, for instance, might be translated into the following formulas, 
respectively: 

A v B 
           A ® ¬B 



where A stands for “Juan eats an apple,” B stands for “Juan eats biscotti,” and “¬” 
denotes logical negation. Proof theory can transform the symbols above into new 
formulas using rules of inference. For example, one rule of inference (called 
“disjunction elimination”) states that if the following symbols are given or 
derived: 

A v B 
           ¬A 
then a derivation from them is: 

B 
which logicians take to roughly correspond to the following sensible inference: 

Juan eats an apple or he eats biscotti or he eats both. 
           He doesn’t eat an apple. 
           Therefore, he eats biscotti. 
And model theory shows that whenever both A v B and ¬A true, B must be true 
too, and so the inference is valid.  Hence, both proof theory and model theory 
concur in what can be inferred from those logical formulas. In computer science, 
researchers develop techniques to automate the process of searching for proofs 
(Bibel, 2013). 

Insert Table 2 about here. 
In psychology, logic can serve both normative and descriptive functions. Its 

role is normative whenever theorists claim that to be rational, reasoners must infer 
only logically valid inferences. Its role is descriptive when theorists argue that the 
process of reasoning depends on representing assertions in English as logical 
expressions, applying rules of inference over those expressions, and building up 
mental proofs. Many early accounts of reasoning proposed this notion (Braine, 
1978; Johnson-Laird, 1975; Osherson, 1974–1976; Rips, 1994) and recent 
treatments maintain it (Baggio, Lambalgen, & Hagoort, 2015; Monti, Parsons, & 
Osherson, 2009; O’Brien, 2014; Stenning & van Lambalgen, 2016). 

Despite the efforts to characterize human reasoning as fundamentally 
logical, the prevailing view in psychology is that logic is a flawed yardstick of 
human rationality (pace Piaget). Three problems vex logical accounts of 
reasoning: first, there exists no algorithm to recover the logical form of a natural 
language expression (Johnson-Laird, 2010). The contents within an assertion 
matter just as much as their structure, and reasoners use background knowledge in 
comprehending discourse and interpreting sentences. Consider the following 
inference in logic (and its English translation in parentheses): 

6.  A ® B (If A then B) 
    ¬B  (Not B) 



    � ¬A (Therefore, not A) 

The inference, known as “modus tollens”, is valid based on its abstract form. But 
certain contents of A and B can render the inference counterintuitive (see Johnson-
Laird & Byrne, 2002). Consider this inference:  

7. If Marnie visited Portugal then he didn’t visit Lisbon. 
               He visited Lisbon. 
               Therefore, he didn’t visit Portugal. 
Reasoners know that Lisbon is in Portugal, and so the inference, despite its logical 
validity, seems incorrect. Of course, one can represent the geographic relation 
between Lisbon and Portugal using some logical formula as an addendum, e.g., 

If Marnie visited Lisbon, then he visited Portugal. 
But, incorporating that additional premise does not prevent the counterintuitive 
inference in (7). Indeed, it allows reasoners to derive a contradiction, e.g., 

Marnie visited Portugal and he didn’t visit Portugal. 
Logic is monotonic in that any set of premises, even a contradictory one, yields an 
infinitude of deductions, and nothing requires conclusions to be withdrawn. 
Human reasoning, in contrast, is non-monotonic: new information can overturn old 
assumptions (Oaksford & Chater, 1991), and contradictions cause reasoners to 
reject assumptions or else explain inconsistencies (Johnson-Laird, 2006). 

A second reason logic fails as an account of human reasoning is that 
reasoners systematically avoid making many valid, but vapid, inferences. 
Orthodox logic provides no guide as to whether some are more reasonable than 
others. Consider these redundant inferences: 

8. Ellsworth is in Ohio. 
               Therefore, he’s in Ohio and he’s in Ohio. 
               Therefore, he’s in Ohio and he’s in Ohio and he’s in Ohio. 
               …and so on, ad infinitum. 
These deductions are silly in daily life, and no reasonable psychological theory 
should expect reasoners to produce them (Johnson-Laird et al., 2015). Accounts 
that rely on logic tend to ignore the problem by explaining only how reasoners 
evaluate given inferences, and not how they generate them (Braine & O’Brien, 
1998; Rips, 2002). 

A final difficulty for logic concerns the word “if.” Consider its use in a 
conditional statement mentioned earlier: 

If the housing market crashes, then the stock market crashes. 
How do people interpret such statements? Many researchers argue that the answer 
requires a radical shift away from logic: in logic, the connective that bears the 
closest resemblance to “if” in the sentence above is the “material conditional” (see 



Table 2; and Nickerson, 2015, for a review). Material conditionals are truth 
functional, i.e., they are true in every situation except when A is true and C is false 
(see Table 2). As a result, they yield counterintuitive norms, e.g., they permit the 
following inference: 

9. James is hungry. 
               Therefore, if he is happy, then he is hungry. 
If people reason based on material conditionals, then the deduction in (9) is valid – 
no matter what the if-clause is! That is because a true then-clause renders the 
conditional conclusion true, even when the if-clause is false. The inference may 
strike the reader as a rebuke to common sense: why should James’s hunger imply 
any dependency between his happiness and his appetite? Orthodox logic calls for 
the validity of this so-called “paradox” of the material conditional, but many 
psychologists argue for its invalidity. Indeed, conditionals and their associated 
inferences may be the topic that most vexes students of reasoning. 

One alternative idea has risen to prominence in the last decade: conditionals 
are not logical, deterministic, or truth functional – but rather probabilistic. The 
idea (which originates from Adams, 1975, 1998) has sweeping implications, and 
its proponents argue that a probabilistic conditional calls for a probabilistic view 
of reasoning and rationality more generally. A primary rationale for the 
probabilistic view is that reasoners rarely deal with certain information, and so the 
formal framework of thinking needs to take into account uncertainty. I turn to 
examine the central claims of this new probabilistic paradigm. 

Probability and uncertainty 
Recent theorists argue that human rationality is fundamentally probabilistic 

(e.g., Evans & Over, 2013; Fugard, Pfeifer, Mayerhofer, & Kleiter, 2011; 
Oaksford & Chater, 2007, 2009; Politzer, Over, & Baratgin, 2010). The view is 
based in the idea that conditionals, quantified statements, assertions about causes 
and effects, decisions, and perceptual input all convey information about degrees 
of belief, and that reasoning about beliefs is inherently uncertain (see Elqayam & 
Over, 2013, for an overview). Early probabilistic accounts of reasoning proposed 
that subjective probabilities reflect degrees of belief (Adams, 1998; de Finetti, 
1995; Ramsey, 1990; Tversky & Kahneman, 1983). Hence, a conditional such as: 

If it rains, then the ground is muddy. 
means something akin to: 

Probably, if it rains then the ground is muddy. 
A probabilistic conditional tolerates exceptions, i.e., it can be true even in 
situations in which it rains and the ground is not muddy. And it can be modeled 



with mathematical precision using the conditional probability, P(muddy | rain). 
The conditional probability assigns a numerical value to the belief that it is muddy 
under the supposition that it rains. Accordingly, the suppositional theory of 
conditionals advocated by Evans and Over (2004) argues that reasoners establish 
their subjective belief in a conditional statement by applying the “Ramsey test” 
(Ramsey, 1929/1990): they first suppose that the if-clause is true, and then they 
assess the likelihood of the then-clause through mental simulation. A corollary of 
the Ramsey test is that reasoners should equate their belief in a conditional, P(if A 
then C) with an assessment of a conditional probability, P(C | A). For example, 
their answers to the following two questions should be nearly identical: 

10. What is the probability that if it rains, then the ground is muddy? 
P(if A then C) 

       Given that it rains, what is the probability that the ground is muddy? 
P(C | A) 

This equivalence, colloquially known as The Equation (Edgington, 1995), has a 
striking consequence. In the probability calculus, P(it’s muddy | it doesn’t rain) 
has no bearing on P(muddy | it rains), and so, if people equate P(if it rains then it’s 
muddy) with P(it’s muddy | it rains), then they should judge that P(it’s muddy | it 
doesn’t rain) is undefined, irrelevant, or indeterminate. It follows that the truth 
table of a basic conditional is defective and not a function of the truth of the if- and 
then-clauses (see Table 2; and also de Finetti, 1936/1995; Ramsey, 1929/1990). 
The defective interpretation of a conditional is a consequence of the Ramsey test 
and the Equation, and the three assumptions provide a formal framework for 
reasoning about conditionals and other sentences non-monotonically (Oaksford & 
Chater, 2013). 

A final assumption of the probabilistic paradigm is that probabilistic 
validity (p-validity) supplants logical validity (Adams, 1998; Evans & Over, 2013; 
Oaksford & Chater, 2007). A deduction is probabilistically valid whenever its 
conclusion’s probability exceeds or is equal to the probability of its premises. 
When the probability of its conclusion is lower than that of its premises, the 
inference is invalid, though it may be a plausible induction. This final assumption 
is powerful enough to dispense with the paradoxes of material implication. 
Consider how the probabilistic approach handles the paradox in (9): 

9’. James is hungry = P(hungry) 
                Therefore, if he is happy, then he is hungry = P(hungry | happy) 
Except in the unlikely case that James being happy has no effect on the probability 
that he’s hungry, the probability of the conclusion is likely to be less probable than 
the premise: the former describes situations that are a proper subset of the latter.  
Since the conclusion’s probability is lower than that of the premise, it is not 
probabilistically valid. And so, by rejecting material implication in favor of a 



defective interpretation of conditionals, and by relying on probabilistic instead of 
logical validity, the probabilistic paradigm posits a viable solution to explain why 
humans reject the “paradoxes” of material implication. 

The four assumptions above form the pillars of the probabilistic paradigm 
of reasoning (see Table 1), and they work to counter many of the issues that vex 
those who advocate a form of mental logic. For instance, the probability calculus 
allows assertions to vary in their certainty, and additional evidence can lower the 
probability of a conclusion: hence, unlike orthodox logic, the probability calculus 
needs no additional machinery to implement non-monotonic reasoning. In recent 
years, researchers extended the paradigm beyond its initial scope of reasoning 
about conditionals and quantified assertions to various novel domains, such as 
reasoning about cause and effect (e.g., Ali, Chater, & Oaksford, 2011; Bonnefon 
& Sloman, 2013), reasoning about what is permissive and impermissible (e.g., 
Elqayam, Thompson, Wilkinson, Evans, & Over, 2015) and everyday informal 
argumentation (e.g., Corner & Hahn, 2009; Hahn & Oaksford, 2007; Harris, Hsu, 
& Madsen, 2012). The probabilistic approach to reasoning remains a fruitful and 
dominant perspective on what humans compute when they reason, and it serves as 
a way to reconceptualize the notion of rationality using the language of probability 
theory. 

Yet, evidence in support of the probabilistic paradigm is mixed. For 
example, when reasoners have to judge the truth of various conditionals, their 
behavior supports a defective truth table (Evans, Ellis, & Newstead, 1996; 
Oberauer & Wilhelm, 2003; Politzer et al., 2010) – but when they have to describe 
what is possible given a conditional statement, they describe the possibilities that 
correspond to a material implication (Barrouillet, Gauffroy, & Leças, 2008; 
Barrouillet, Grosset, & Leças, 2000). Reasoners also report that certain 
conditionals can be falsified (Johnson-Laird & Tagart, 1969; Oaksford & 
Stenning, 1992), a result that conflicts with the idea that they tolerate exceptions. 
One of the most striking predictions of the probabilistic paradigm is The Equation: 
some studies validate it (e.g., Evans et al., 2013; Geiger & Oberauer, 2010; 
Handley, Evans, & Thompson, 2006; Oberauer & Wilhelm, 2003; Over, 
Hadjichristidis, Evans, Handley, & Sloman, 2007), while others conflict with it 
(Barrouillet & Gauffroy, 2015; Girotto & Johnson-Laird, 2004; Schroyens, 
Schaeken, & Dieussaert, 2008). 

Perhaps a more striking disconnect between reasoning behavior and the 
probabilistic paradigm is that people appear to interpret sentences 
deterministically, and not probabilistically, by default. For instance, Goodwin’s 
(2014) studies show that unmarked, basic conditionals, such as if A then C, 
generally admit no exceptions, whereas conditionals marked as probabilistic, such 
as if A then probably C, allow for violations (see Figure 1). Such a difference 
should not occur if conditional reasoning is inherently probabilistic. In a similar 
fashion, proponents of the probabilistic framework argue that causation and causal 



conditionals are probabilistic (e.g., Ali et al., 2011; Cheng, 2000) and can be 
formalized using Bayesian networks (e.g., Glymour, 2001; Steyvers, Tenenbaum, 
Wagenmakers, & Blum, 2003). They propose that assertions such as runoff causes 
contamination are probabilistic statements that denote that contamination is more 
likely when runoff is present: P(contamination | runoff) > P(contamination | no 
runoff). But, reasoners can use single observations to establish causal relations 
(e.g., Schlottman & Shanks, 1992; White, 1999; Ahn & Kalish, 2000; Sloman, 
2005) and refute them (Frosch & Johnson-Laird, 2011). They also recognize the 
distinction between causal and enabling conditions (Khemlani, Barbey, & 
Johnson-Laird, 2014; Wolff, 2007). The difference between the two is evident in 
the following two assertions: 

     Pulling the trigger caused the gun to fire. 
                Loading the chamber with bullets enabled the gun to fire. 
because the causal verbs “caused” and “enabled” are not interchangeable. These 
results run counter to probabilistic interpretations of causation (see also Pearl, 
2009). 

Insert Figure 1 about here. 
Additional open questions remain about the probabilistic paradigm of 

rationality. First, how does the paradigm prevent vapid inferences, such as A, 
therefore A and A and A (see also example 8 above)? These inferences are both 
logically and probabilistically valid, since the conclusions are just as probable as 
the premises. Second, what do reasoners represent, and how do they process those 
representations, when they reason? Probabilistic theories of reasoning often 
describe at the “computational level” of analysis (see Marr, 1982), which 
describes what reasoners compute but not how they compute it, and so few of its 
proponents model online measures of reasoners’ inferential processes such as 
response times and eye-tracking (but cf. Chater & Oaksford, 1999).  Third, how 
can probabilism apply to spatiotemporal and kinematic reasoning domains (e.g., 
Hegarty, 2004; Khemlani, Mackiewicz, Bucciarelli, & Johnson-Laird, 2013; Ragni 
& Knauff, 2013; Knauff, 2013)? These domains reflect structural relations 
amongst entities (e.g., the spoon is next to the fork), and it is difficult to see how 
probabilities enter into these structures. Finally, why do people make 
systematically erroneous inferences? All valid deductions are also p-valid (but not 
vice versa; see Evans, 2012), and so a systematic failure to draw a valid inference 
is a failure of p-validity, too. Humans appear to be predictably irrational on any 
measure of rationality. 

Despite these questions, advocates of the probabilistic paradigm are 
unanimous in their proposal that uncertainty plays a crucial role in rational 
thinking – and the preponderance of data corroborates this claim. As they argue, 
progress in understanding rationality requires an account of why people reason in 
degrees of belief, and why some experimental tasks systematically elicit uncertain 



judgments. As the paradigm continues to develop, new theoretical insights, 
patterns of behavior, and computational models may resolve the open issues 
highlighted above. An older paradigm, however, engages each of the issues 
directly. It advocates that reasoning depends on a more rudimentary notion of 
uncertainty: possibilities. 

Models of possibilities 
A model of the world – an architect’s blueprint, for instance – represents a 

possibility. Models of possibilities are intrinsically uncertain, because they mirror 
only some properties of the things they represent: architectural models typically do 
not have working plumbing and electrical systems that correspond to those in the 
buildings they beget, and so they are compatible with different physical 
instantiations. Models were introduced to psychology by the Scotsman Kenneth 
Craik, who argued that people build “a ‘small-scale model’ of external reality and 
of its own possible actions” and consider alternatives to draw conclusions about 
the past, understand the present, and anticipate the future (Craik, 1943, p. 61). 
Craik died prematurely, and so his idea lay dormant until psychologists discovered 
its importance in vision (Marr, 1982), imagination (Shepard & Metzler, 1971), 
conceptual knowledge (Gentner & Stevens, 1983), and reasoning (Johnson-Laird, 
1975, p. 50; 1983). 

Mental model theory – the “model” theory, for short – applies to reasoning 
of many sorts, including reasoning based on quantifiers, such all and some, and on 
sentential connectives, such as if, or, and and (Goodwin, 2014; Johnson-Laird & 
Byrne, 1991), reasoning about cause and effect (Goldvarg & Johnson-Laird, 2001; 
Johnson-Laird & Khemlani, in press) and reasoning about probabilities (Johnson-
Laird et al., 1999; Khemlani, Lotstein, & Johnson-Laird, 2015). Three main 
principles underlie the theory. First, each model is an iconic representation – i.e., 
its structure corresponds to the structure of whatever it represents (see Peirce, 
1931-1958) – of a distinct set of possibilities. They capture what is common to all 
the different ways in which the possibility might occur (Barwise, 1993), and 
individuals use the meanings of assertions and their own background knowledge 
to construct them. To represent temporal sequences of events, people can construct 
static, spatial models that arrange events along a linear dimension (Schaeken, 
Johnson-Laird, d’Ydewalle, 1996), or else they can kinematic models that unfold 
in time the way the events do (Johnson-Laird, 1983; Khemlani et al., 2013). But, 
models can also include abstract tokens, e.g., the symbol for negation (Khemlani, 
Orenes, & Johnson-Laird, 2012). 

Second, models demand cognitive resources, and the more models an 
inference requires, the more difficult it will be. Reasoners tend to rely on their 
initial model for most inferences, but they can revise their model to check initial 
conclusions. Hence, the theory supports two primary reasoning processes: a fast 



process that builds and scans models without the use of working memory, and a 
slower, memory-greedy process that revises and rebuilds models and searches for 
alternative possibilities consistent with the premises (Johnson-Laird, 1983, 
Chapter 6). The model theory predicts that reasoners should spontaneously use 
counterexamples to refute invalid deductions. 

Third, mental models abide by a "principle of truth" in that they represent 
only what is true in a possibility, not what is false. Consider the following 
disjunction: 

11. Ann visited Beijing or she visited Sydney. 
The mental models of the assertion refer to a set of possibilities that can be 
depicted in the following diagram: 

   Beijing 
    Sydney 
   Beijing  Sydney 

The diagram uses tokens in the form of words to stand in place for the mental 
simulations that reasoners construct, e.g., a simulation of Ann visiting Beijing. The 
first row above represents the possibility that Ann visited Beijing, but it does not 
explicitly represent the information that she didn't visit Sydney. The second model 
captures the opposite scenario, and the third captures the scenario in which she 
visited both places. In many cases, the mental model of the disjunction suffices. 
But the incomplete representation leads reasoners to systematically err on 
problems that require them to think about falsity (Johnson-Laird, Lotstein, & 
Byrne, 2012; Khemlani & Johnson-Laird, 2009). Reasoners can reduce their errors 
by fleshing their model out, e.g., by appending tokens that use negation to 
represent what is false in the model: 

  Beijing ¬ Sydney 
 ¬ Beijing  Sydney 
   Beijing  Sydney 

This fully explicit model represents both what is true and what is false. 
When people build models, they take into account the meanings of words 

and their relations to one another. Contrast (11) above with (12) below: 
 12. Ann is in Beijing or she is in Sydney. 
Background knowledge prevents reasoners from building the scenario in which 
Ann is in Beijing and Sydney at the same time, and so the mental model of (12) 
omits this possibility: 

  Beijing 



    Sydney 
Modulation refers to the process of incorporating background knowledge into the 
construction of a model, and it also operates by establishing temporal and spatial 
relations between the events. For instance, consider the exclusive disjunction in 
(13): 

13. Ann studied for the test or else she failed it. 
The model of the scenario has a parallel structure to the model of (12), but 
reasoners also know that studying for a test must precede the test itself, and that 
failing a test happens during (or after) a test. Hence, the full model of the scenario 
establishes a temporal sequence of events (where time moves from left to right), 
e.g., 

  Studied  Took-test 
    Took-test  Failed 
In general, reasoners draw inferences from models by scanning them. If a 

putative conclusion holds in all models, it is necessary; if it holds in most models, 
it is probable; and if it holds in at least one model, it is possible. By incorporating 
background knowledge into a model, the theory explains how reasoners make so-
called “bridging” inferences (Clark, 1975; Gernsbacher & Kaschak, 2003). Hence, 
one reasonable conclusion from the model of (13) is that Ann took the test. But, a 
single model can support multiple conclusions, and so a valid inference is that if 
she studied for the test, she didn’t fail it. And, conclusions can be “modal”, i.e., 
they can concern what’s possible, and so the theory predicts that some people will 
infer that it is possible that she failed the test (if she didn’t study). The premise 
leaves uncertain whether or not she passed, and so reasoning about uncertainty is 
central to model-based reasoning (see Khemlani et al., under review). 

The model theory makes three predictions unique to theories of reasoning, 
and they have been borne out by recent studies. First, reasoners should 
spontaneously use counterexamples when they reason (e.g., Johnson-Laird & 
Hasson, 2003; Kroger, Nystrom, Cohen, & Johnson-Laird, 2008), and reasoners’ 
reliance on counterexamples should reveal that they treat assertions, such as 
conditionals and causal statements, deterministically (e.g., Goodwin, 2014; Frosch 
& Johnson-Laird, 2011). Second, reasoners should fall prey to “illusory” 
inferences in which mental models suggest a conclusion that contradicts the 
correct response. Illusions have been discovered in all major domains of reasoning 
(see Johnson-Laird, Khemlani, & Goodwin, 2015; Khemlani & Johnson-Laird, 
under review). Third, valid inferences that require one model should be easier than 
those that require multiple models (e.g., Khemlani, Lotstein, Trafton, & Johnson-
Laird, 2015; Knauff, 2013; Ragni & Knauff, 2013). 



The model theory differs from logic because it posits that people build sets 
of possibilities. Logic, instead, concerns truth conditions. Consider this inference, 
which shows how possibilities diverge from truth conditions: 

14. Ann visited Beijing or she visited Sydney, but not both. 
       Therefore, Ann visited Beijing or she visited Sydney, or both. 
The conclusion in (14) is valid in sentential logic, because the conclusion is true in 
any set of premises in which the premise is true. But it invalid in the model theory, 
because the models of the conclusion do not correspond to the models of the 
premise, i.e., the models of the conclusion permit a possibility (in which Ann 
visits both cities) that the premise explicitly denies. 

How does the model theory handle the seemingly paradoxical inferences 
that come from the material conditional, e.g., (9)? 

9. James is hungry. 
               Therefore, if he is happy, then he is hungry. 
As in the previous inference, the model theory does not warrant the 
counterintuitive conclusion in (9) because the model of the conclusion concerns 
possibilities that the model of the premise does not make explicit. In particular, the 
fully explicit models of the conditional conclusion are: 

  happy  hungry 
 ¬ happy  hungry 
  ¬ happy ¬ hungry 

As the models show, nothing in the premise that James is hungry supports the 
possibility in models of the conclusion in which he is not hungry. 

So, the model theory explains why people reject “paradoxical” inferences. 
But, as Orenes and Johnson-Laird (2012) show, theory goes a step further: it 
predicts that in certain scenarios in which the conditional assertions are modulated, 
people should accept paradoxical inferences.  Consider (15) below, which has a 
structure that parallels (9) above:  

15. Lucia didn’t wear the bracelet. 
             Therefore, if Lucia wore jewelry then she didn’t wear the bracelet. 
The model of the premise in (15) is: 

   ¬ bracelet 
which is compatible with Lucia either wearing jewelry or not wearing jewelry: 

  jewelry ¬ bracelet 
 ¬ jewelry ¬ bracelet 



And, reasoners know that a bracelet is a type of jewelry, so it is impossible to wear 
a bracelet without also wearing jewelry. Hence, the fully explicit models of the 
conditional in (15) are: 

  jewelry ¬ bracelet 
 ¬ jewelry ¬ bracelet 

The premise is consistent with both cases in which she did not wear the bracelet, 
and so, the conclusion follows. Participants accept inferences akin to (15) on 60% 
of trials but accept inferences akin to (9) on only 24% of trials (Orenes & Johnson-
Laird, 2012, Experiment 1). 

Neither logic-based theories nor accounts based on probabilities explain 
why people do not draw vapid inference, such as the conjunction of a premise with 
itself. But, the model theory does: there is no mechanism in the model theory to 
introduce possibilities beyond what is provided by background knowledge or the 
meanings of the premises. Once a reasoner builds a set of models, he or she can 
reason only from that finite representation, and so the theory explains why people 
do not draw the infinitude of valid (but useless) conclusions that any arbitrary set 
of premises allows. 

The model theory paints a clear picture of human rationality: good 
reasoning requires people to draw relevant and parsimonious inferences after they 
have considered all possible models of the premises. They need to take into 
account whether the meanings of the terms and verbs in the premises prohibit 
certain possibilities or introduce certain relations. A reasoner’s failure to take 
meaning into account can lead to errors and counterintuitive responses, such as 
paradoxical inferences. Hence, people are equipped with the mechanisms for 
rational inference, but they often err in practice when they fail to consider what is 
false, when they fail to search for counterexamples, and when they do not possess 
the relevant background knowledge to solve a problem accurately. 

One central limitation of the theory is that it is difficult to derive 
quantitative predictions from it. That is because it posits that people build iconic 
mental simulations, and iconicity differs depending on the reasoning domain. An 
iconic representation of a quantified assertion, e.g., “Most of the dishes are tasty”, 
concerns sets of entities and their properties, whereas an iconic representation of a 
spatial assertion, e.g., “The dog is on top of the bed,” demands a three-dimensional 
spatial layout. Hence, researchers build formal computational implementations of 
the model theory by writing computer programs that simulate its tenets (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991). More recent implementations can, in 
fact, yield quantitative predictions (see, e.g., Khemlani et al., 2015b; Khemlani & 
Johnson-Laird, 2013). In contrast, proponents of probabilism often eschew notions 
of what people represent in favor a theory that makes quantitative predictions 
explicit. Another limitation of the theory is that it does not explain how reasoners 



learn and induce background knowledge from evidence, whereas probabilistic 
inference paints a clear picture of learning as an application of Bayes’s rule, which 
explains how to revise beliefs in light of evidence. 

Summary 
Three overarching models of rationality in deduction exist: the view that 

logical validity serves as a foundation for rational inference; the view that 
rationality depends on taking uncertainty into account by modeling it through the 
probability calculus; and the view that rationality depends on the possibilities to 
which sentences refer. What remains controversial is the degree to which people’s 
representations are inherently probabilistic and fuzzy, or whether that fuzziness 
comes from deterministic representations that are processed probabilistically. Any 
fundamental framework of human rationality needs to explain why some reasoners 
err systematically and some reasoners get the right answer, why reasoners reject 
paradoxical inferences and avoid vapid ones, and how to incorporate structured 
background knowledge into deductive reasoning processes. The next section 
concerns how people make inductive inferences from that background knowledge. 

What’s the relation between 
deductive and inductive reasoning? 

Irrationality in deductive reasoning can be easy to characterize. For 
example, this inference is a conspicuous mistake:  

16. A or else B. 
             Not A. 
                 Therefore, not B. 
It’s not possible for the conclusion to be true given the truth of the premises – the 
three assertions are inconsistent with another. Researchers debate which definition 
of validity is most adequate (e.g., Evans & Over, 2013; Johnson-Laird & Byrne, 
1991; Khemlani et al., under review; Oaksford & Chater, 2007; Rips, 1994; 
Singmann et al., 2014), but, provided that an appropriate definition is chosen, 
violations of it are often transparent. And, many inferences, such as the one in 
(16), are both invalid and p-invalid. But, as Hume observed, there exists no 
independent rational way to justify induction (though several scholars have offered 
proposals, e.g., Carnap, 1962; Skyrms, 1986). Consider the following two 
inductions: 



17a. Horses have property X. 
                   Therefore, cows have property X. 
               b. Horses have property X. 
                   Therefore, iguanas have property X. 
In each case, the truth of the premise does not determine the truth of the 
conclusion. Knowing nothing about what property X means, (17a) might appear a 
stronger and more plausible argument than (17b), since horses are more similar to 
cows than they are to iguanas. Seminal work by Rips (1975) established that 
similarity does indeed affect the propensity to make inductive inferences, and 
psychologists have cataloged many other relevant aspects of categories and their 
properties that appear to promote induction (Table 3 provides a partial listing; for 
more detailed reviews, see Hayes, Heit, & Swendsen, 2010; Heit, 2000). 
Researchers also developed new computational models of induction whose aim is 
to account for the aforementioned behaviors (see Table 4). 

Insert Table 3 about here. 
In the last decade, however, scientists returned to the question of whether 
inductive and deductive inferences arise from distinct mental operations, or 
whether the two forms of inference reflect different properties of a unitary process 
of reasoning. The issue is central to advancing new theories of inductive inference: 
if deduction and induction come from one unitary process, then it is possible to 
apply the same computational modeling framework (see Table 1) to each set of 
problems. If the two types of inference are distinct, the frameworks developed for 
characterizing deductive inference cannot be used to characterize induction. A 
study by Rips (2001) sparked the debate: he posited that if deduction and 
induction rely on the same processes, the instructional manipulations designed to 
elicit one kind of reasoning over another should have no effect on reasoners’ 
evaluations of an argument. To elicit deductive reasoning, one group of 
participants in his study was instructed to judge whether a conclusion necessarily 
followed from a set of premises. To elicit inductive reasoning, another group was 
instructed to judge the strength of the conclusion (i.e., how plausible and 
convincing it was) from the same set of premises. The instructional manipulation 
uncovered a critical interaction. Consider (18a) and (18b) below: 

18a. If car X10 runs into a brick wall, it will speed up. 
                   Car X10 runs into a brick wall. 
                   Therefore, Car X10 will speed up. 
               b. Car X10 runs into a brick wall. 
                   Therefore, Car X10 will stop. 
The conclusion in (18a) is valid but inconsistent with background knowledge. The 
conclusion in (18b) is invalid but consistent with background knowledge. 
Participants accordingly evaluated (18b), but not (18a) as inductively strong, while 
they evaluated (18a) as deductively valid. Rips took the divergent behavior 



between assessing an argument’s strength compared to its validity as evidence 
against a unitary view of inductive inference, and he argued that induction and 
deduction reflect different ways of evaluating arguments. In his view, the former 
incorporates content into the evaluation, while the latter “[takes] a more abstract 
approach” and “generalizes over specific content” (Rips, 2001, p. 133). 

Insert Table 4 about here. 
Heit and Rotello (2010) reprised Rips’ argument and applied it to reasoning 

about categories. Consider (19a) and (19b) below: 
19a. Mammals have property X. 

                   Therefore, cows have property X. 
               b. Horses have property X. 
                   Therefore, cows have property X. 
The authors characterized (19a) as deductively valid and (19b) as inductively 
strong (since horses and cows are similar to one another; see Table 3), though they 
varied the similarity between premise and conclusion categories for inductive 
strong arguments. Critics may wonder whether the argument in (19a) is in fact 
deductively valid. Generic statements such as “mammals give live birth” do admit 
exceptions, and they are often interpreted as referring to properties about 
categories instead of quantifications over individuals (Carlson & Pelletier, 1995; 
Prasada, Khemlani, Leslie, & Glucksberg, 2013). But, reasoners interpret novel 
generics such as “mammals have property X” as referring to nearly all members of 
a category (Cimpian, Brandone, & Gelman, 2010). Heit and Rotello also adopted 
Rips’ (2001) technique of varying the instructions to elicit deductive or inductive 
inferences. They posited that if the cognitive processes that underlie deduction and 
induction are distinct, then those processes should vary in their sensitivity to 
deductive validity. To measure sensitivity, the authors applied a metric from signal 
detection theory, d’, which specifies the difference between a hit rate (i.e., 
evaluating an argument as valid when it was indeed valid) and a false alarm rate 
(i.e., incorrectly evaluating an argument as valid when it was invalid) to their data. 
They found that reasoners who were instructed to reason deductively were more 
sensitive (their d’ value was higher) than those instructed to reason inductively. 
And they echoed Rips’ (2001) conclusion: deduction and induction can sometimes 
arise from different cognitive processes. 

In response to Rips’ (2001) and Heit and Rotello’s (2010) research, Lassiter 
and Goodman (2015) developed a unitary theory capable of explaining the 
differences in sensitivity as a function of instructions. Their theory builds on the 
idea (originally due to Oaksford & Hahn, 2007) that the epistemic modal words 
used in the instructions, i.e., “necessary” and “plausible”, can be mapped onto 
thresholded scales for comparison purposes (Kennedy, 2007). The locations of the 
thresholds may be imprecise and unstable, so Goodman and Lassiter interpreted 
thresholds as referring to a probability distribution instead of a fixed value. They 



chose a power law distribution for their thresholds under the assumption that the 
noise inherent in the thresholds should vary less in situations of extremely high 
confidence or extremely low confidence. Their model predicts a difference in 
sensitivity analogous to what Rotello and Heit (2010) discovered. In addition, it 
predicts that extensive instructional manipulations are not necessary to yield the 
difference – it should suffice to vary only words “necessary” and “plausible” from 
problem to problem. They reported data that cashed out their predictions, and 
argued that their theory serves as a counterexample to the claim that only 
fundamental differences in inductive and deductive reasoning processes explain 
differences in sensitivity. 

The amount of overlap between the cognitive processes that underlie 
induction and deduction remains unknown. However, it may prove difficult to 
maintain the view that the processing of semantic content is pertinent to inductive 
inferences alone, as contents affect purely deductive inferences in systematic 
ways. In particular, contents help establish a priori truth values. As Steinberg 
(1970; 1975) showed, people assess certain statements (such as 20a-c) as 
redundant (i.e., vacuously true): 

20a. The apple is a fruit. 
               b. The automobile is a vehicle. 
               c. The husband is a man. 
They assess other statements as vacuously false when those statements are 
nonsensical (e.g., “the chair is a sheep”) or else contradictory (e.g., “the infant is 
an adult”). Recent work shows that reasoners make similar distinctions when 
engaging in deductive inference. Quelhas and Johnson-Laird (2016) report studies 
in which they gave participants premises such as those in (21a): 

21a. José ate seafood or he ate shrimp. 
         José ate shrimp. 
Most participants (71%) concluded that José ate seafood. The deduction is sensible 
but impossible to make on the basis of the abstract form of the sentences alone. 
Neither an inclusive nor an exclusive disjunction permits the inference. Reasoners 
need to take into account the meaning of the words “shrimp” and “seafood”, and 
in particular, they need to use those meanings to block the consideration of any 
possibility in which José has shrimp but not seafood (see Khemlani et al., under 
review; and example (7) above). Hence, contents enter into both deductive and 
inductive inferences, and do not serve as a means to distinguish between the two 
(pace Rips, 2001). 

Inductive reasoning is often studied through the lens of category and 
property induction, but people draw inductive inferences beyond reasoning about 
categories and properties. In particular, two understudied forms of inductive 



inference appear central to human thinking: probabilistic reasoning about unique 
events and reasoning about defaults. The chapter addresses each in turn. 

Probabilistic reasoning 
Probabilistic inferences are often inductions, and both numerate and 

innumerate cultures reason about probabilities. This statement, for instance: 
22. SURGEON GENERAL'S WARNING: Tobacco Use Increases The  

                 Risk Of Infertility, Stillbirth, and Low Birth Weight 
invites the probabilistic induction that if you are a pregnant female smoker, you 
are likely (but not guaranteed) to suffer from the maladies above. Until the advent 
of the probability calculus in the late 17th and early 18th centuries (see Hacking, 
2006), the dominant view of probabilistic thinking came from Aristotle, who 
thought that a probable event concerned “things that happened for the most part” 
(Aristotle, Rhetoric, Book I, 1357a35; Barnes, 1984; Franklin, 2001). The calculus 
turned qualitative inductions into quantitative ones, and contemporary reasoners 
have little difficulty drawing quantitative conclusions. For example, what would 
you guess is the numerical probability that Iran will restart its nuclear weapons 
program? Some might give a low estimate (less than 10%, say), while others 
consider it likely (more than 90%). And uncertain reasoners may provide a range 
to their estimates, e.g., between 30% and 50%. People reason inductively 
whenever they make such estimates. Some researchers wonder whether probability 
estimates of unique events are sensible to make (Cosmides & Tooby, 1996). 
Theorists who assume that probabilities must be based on the frequencies of 
events argue that probabilities of unique events are unsystematic and unprincipled, 
and the calculus itself may be irrelevant to events that cannot be interpreted as 
members of a set of similar events (Gigerenzer, 1994). But, pioneering work by 
Tversky and Kahneman (1983) suggests that reasoners’ estimates of the 
probabilities of unique events reflect either their implicit use of heuristics or else 
their explicit consideration of relevant evidence (see also Tversky & Koehler, 
1994). Tversky and Kahneman show that reasoners violate the norms of the 
probability calculus systematically, e.g., they estimate the probability of a 
conjunction, P(A&B), to be higher than the probability of its individual conjuncts, 
i.e., P(A) and P(B). Many researchers have subsequently proposed accounts of this 
“conjunction fallacy” (Barbey & Sloman, 2007; Fantino, Kulik, Stolarz-Fantino, 
& Wright, 1997; Wallsten, Budescu, Erev, & Diederich, 1997; Wallsten, Budescu, 
& Tsao, 1997). 

Following Tversky and Kahneman, much of the work on probabilistic 
reasoning concerned how reasoners estimate the probability of sentential 
connectives such as conditionals and disjunctions. For example, one dominant 
view is that reasoners interpret the probability of conditionals, e.g., P(If A then B) 



as equivalent to the conditional probability of B given that A is true, P(B | A). 
Recall from the discussion on deductive reasoning that this relation is often 
referred to as The Equation, and it is a central assumption of many probabilistic 
theories of reasoning (see Table 1). The extent to which naïve reasoners make use 
of The Equation remains unknown. In probability theory, a conditional 
probability, P(A | B), can be computed from the ratio of P(A&B) to P(B). But Zhao, 
Shah, and Osherson (2009) showed that reasoners do not tend to carry out that 
procedure in estimating real future events. Some authors propose instead that 
people rely on the aforementioned “Ramsey test” in which they add B to their 
stock of knowledge and then estimate the conditional probability from their 
estimate of A (e.g., Evans, 2007; Gilio & Over, 2012). 

If the Equation holds in daily life, there remains a profound mystery: where 
to the numbers in estimates of the conditional probability of a unique event come 
from?  A recent dual-process account shows how humans make probabilistic 
inductions about conditional probabilities (Khemlani et al., 2015a). It posits that 
reasoners simulate evidence in the form of mental models to build a primitive 
analog magnitude representation that represents uncertainty. They can then map 
the representation to an intuitive scale to yield informal estimates of probabilities, 
e.g., “highly probable”, or else they can deliberate to convert the representation 
into a numerical probability, e.g., 95%. The theory explains systematic violations 
of the probability calculus such as the conjunction and disjunction fallacies 
discovered by Kahneman and Tversky, and it supports a Bayesian interpretation of 
probabilities, which states that reasoners interpret subjective probabilities as 
degrees of belief. But, it takes a further step in proposing that degrees of belief and 
estimates of numerical probabilities come from analog magnitude representations 
of the sort found in animals, children, and adults. Subsequent theories of how 
people compute probabilities need to explain the representations that underlie 
them. 

Inductive reasoning occurs even in the absence of estimates of 
probabilities. One sort of induction concerns default reasoning, i.e., reasoning 
about properties, events, and states of affairs that hold in the absence of 
contravening information. I conclude the discussion on induction by examining 
default inference. 

Default reasoning 
If you learn nothing else about an arbitrary dog other than that he is named 

Fido, you are apt to conclude that Fido has four legs, absent any information to the 
contrary. This form of inductive reasoning is called default inference, because you 
would give up your conclusion if, say, you found out that Fido was injured. 
Default reasoning is particularly prevalent in situations of uncertainty. Reiter 
(1978) observed that “the effect of a default rule is to implicitly fill in some [gaps 



in knowledge] by a form of plausible reasoning...Default reasoning may well be 
the rule, rather than the exception, in reasoning about the world since normally we 
must act in the presence of incomplete knowledge.” Selman and Kautz (1989) 
echoed Reiter’s sentiment and added that “…default reasoning allows an agent to 
come to a decision and act in the face of incomplete information. It provides a way 
of cutting off the possibly endless amount of reasoning and observation that an 
agent might perform.” Default reasoning affords monumental efficiency gains in 
computation, and indeed, many theoretical accounts of default reasoning are due 
to computer scientists such as the authors above (see also Khardon & Roth, 1995; 
Thielscher & Schaub, 1995; Gilio, 2012). The theories conflict on what they 
consider a valid default inference (Doyle & Wellman, 1991), and many systems of 
default inference are built into object-oriented programming languages. 

Given the conflicts, the dearth of experiments on how people carry out 
default inference is surprising (but cf. Benferhat, Bonnefon, & da Silva Neves, 
2005; Pelletier & Elio, 2005). Default inferences appear to depend on reasoners’ 
background knowledge about the world, and so empirical insights can prove 
instructive. Pelletier and Elio (2005) argued that experimentation is the only 
appropriate way to understand default inference. There is merit to their argument, 
as experimentation can uncover subtleties in reasoning by default. The inference 
about Fido above may seem compelling, but consider a parallel example: suppose 
you meet a Canadian named Sarah. How confident are you that she is right-
handed? Most reasoners appear less willing to draw the default inference in 
Sarah’s case (i.e., that she is right-handed) than in Fido’s case (i.e., that he has 
four legs). Understanding why some default inferences are felicitous and some are 
not may provide psychological constraints on formal accounts of default 
reasoning. For instance, a potential account might posit that reasoners have access 
to the underlying statistics of the world, i.e., they represent four-legged dogs as 
more prevalent than right-handed Canadians. Nobody has proposed such an 
account, but it is an implicit view of unstructured probabilistic models of 
cognition. Still, while subjective evaluations of prevalence are important, 
reasoners’ conceptual understanding of the world may be even more so, because 
conceptual representations of categories contain structure beyond information 
about prevalence. For example, reasoners agree with the following generic 
assertion: 

23. Mosquitoes carry malaria. 
even though they recognize that only a small minority of mosquitoes exhibit that 
behavior (Leslie, Khemlani, & Glucksberg, 2011; Leslie, 2008). In other words, 
had people operated based on prevalence alone, they should have assessed (23) as 
false. Generic assertions appear to provide researchers a window onto reasoners’ 
conceptual structures (Brandone, Cimpian, Leslie, & Gelman, 2012; Carlson & 
Pelletier, 1995; Gelman, 2003), i.e., reasoners appear to agree with generics only 
when certain relations between the category and the property hold (Prasada et al., 



2013). A recent study examined whether people's agreement to generic assertions 
should govern default reasoning behavior (Khemlani, Leslie, & Glucksberg, 
2012). Participants in the study received the following problem:  

24. Suppose you’re told that Leo is a lion. 
      What do you think of the following statement: Leo eats people. 

They were asked to judge the statement on a confidence scale that ranged from 3 
(“I'm confident it's true”) to -3 (“I'm confident it's false”). The crucial 
manipulation was the connection between the kind (lions) and the property (eating 
people). In (24) above, the connection is that eating people is a striking property of 
lions, i.e., it is a behavior that signifies a dangerous predisposition to be avoided, 
and it renders the corresponding generic assertion (“lions eat people”) true (see 
Leslie et al., 2011). Hence, reasoners should be more likely to make the inference. 
In contrast, consider (25) below: 

25. Suppose you’re told that Viv is an athlete. 
      What do you think of the following statement: Viv is a student. 

In (25), there is less of a semantic connection between the kind (athlete) and the 
property (being a student), and so the corresponding generic (“athletes are 
students”) is judged false. Examples (24) and (25) are comparable with regard to 
their prevalences because the properties (eating people and being a student) hold 
for only a minority of the kind, i.e., very few lions eat people, and very few 
athletes are students. The data in our study were subjected to regression analyses 
that compared participants’ performance to normed evaluations of generic 
agreement and prevalence estimation; they revealed that generic agreement 
accounted for more variance than prevalence alone. 

In sum, reasoners make default inferences based on more than just 
statistical information. They pay attention to semantic considerations such as how 
striking or dangerous a property is, and other semantic relations as well, such as 
whether a property is characteristic of a kind (Gelman, 2003; Medin & Ortony, 
1989; Prasada et al., 2013). 

Summary 
Reasoners engage in different forms of inductive reasoning: they induce 

properties of categories, they estimate probabilities of events, and they make 
default inferences. The mathematics of the probability calculus provides ways of 
formalizing people’s inductive inferences, but people systematically violate simple 
applications of the calculus (see Sanborn & Chater, 2016, for a recent synthesis). 
They appear to base their inductions on information about both probabilities (e.g., 
prevalence information) and structures (e.g., mental representations of kinds). 
Future theories must explain how probabilities and structural information coexist. 



One aspect of inductive reasoning is the ability to construct explanations of 
observations, both expected and anomalous. Explanations require reasoners to 
consult their background knowledge, and so they heavily rely on preexisting 
concepts and representations. The next section examines recent investigations of 
explanatory reasoning. 

How do people create explanations? 
A core feature of human rationality is the ability to explain observed 

behaviors and phenomena (Harman, 1965). Explanations allow reasoners to make 
sense of the past and anticipate the future (Anderson & Ross, 1980; Craik, 1943; 
Einhorn & Hogarth, 1986; Gopnik, 2000; Lombrozo & Carey, 2006; Ross, Lepper, 
Strack, & Steinmetz, 1977), and they are central to the way we communicate our 
understanding of the world (Johnson-Laird, 1983; Lombrozo, 2007). The need to 
explain the world has its downside, too: explanatory reasoning is the genesis of 
superstitions, magical thinking, and conspiracy theories, all of which can be 
resistant to factual refutation. A compelling explanation can be a powerful way of 
synthesizing disparate sources of information, whether or not that synthesis is 
warranted. Hence, the process of constructing an explanation is separate from how 
explanations are evaluated. 

The logician Charles Sanders Peirce coined the phrase “abduction” to 
describe the process by which reasoners infer explanations as a way of 
highlighting its differences from deductive and inductive patterns of reasoning. He 
argued that when reasoners abduce, they form a set of explanatory hypotheses. 
And he argued that abduction “is the only logical operation which introduces any 
new idea” (CP 5.172). 

Explanatory reasoning poses a challenge to empirical investigations 
because, while experiments on deduction and induction can systematically remove 
portions of background knowledge from reasoning problems, explanations seem 
inextricably tied to that knowledge, and so researchers worry that experimental 
manipulations of content can heavily bias the kinds of explanations participants 
produce. Applied domains afford systematic ways of understanding reasoners’ 
background knowledge, and the earliest research on explanatory reasoning 
examined domain-specific explanations such as those produced in fault diagnosis 
(e.g., Besnard & Bastien-Toniazzo, 1999; Rasmussen, 1981; Rouse & Hunt, 1984) 
and medical decision-making (e.g., Elstein, Shulman, & Sprafka, 1978; Kassirer, 
1989). Interest in domain-general explanatory reasoning and its underlying 
cognitive processes is relatively new (Keil, 2006), and researchers are only 
beginning to discover how explanations are central to a broad swathe of domains, 



including inductive reasoning (see Table 3), categorization, conceptual 
development, and learning (Lombrozo, 2006, 2016). 

Some researchers investigate explanations through the lens of mechanisms 
involved in encoding and retrieving memories, because people retrieve previously 
inferred explanations from memory (Melhorn, Taatgen, Lebiere, & Krems, 2011), 
and they spontaneously produce new ones when they encoding categories (Shafto 
& Coley, 2003). Other researchers investigate how explanations aid in conceptual 
development (Murphy, 2000; Patalano, Chin-Parker, & Ross, 2006), and cognitive 
development more broadly (Keil, 2006; Legare, 2012; Wellman, Hickling, & 
Schult, 1997). But, by far, most research into explanatory reasoning comes from 
research into causal cognition (Ahn & Kalish, 2000; Alicke, Mandel, Hilton, 
Gerstenberg, & Lagnado, 2015; Ferbach, Macris, & Sobel, 2012; Johnson-Laird, 
Girotto, & Legrenzi, 2004; Khemlani, Sussman, & Oppenheimer, 2011; 
Lombrozo, 2016; Sloman, 2005).  

Causality and explanatory reasoning 
Explanations needn’t be causal (Aristotle, trans. 1989, 1013a). You can 

explain the logic of compound interest, why the Panama Canal connects two 
oceans, and why the elements of a painting make it beautiful without appealing to 
any causal relations. Recent research into Aristotle’s non-causal explanations 
includes Prasada and Dillingham’s (2006) explorations of “formal” explanations, 
i.e., how individuals explain certain properties of an individual by appealing to 
only to the kind of thing that it is. Consider (26a) and (26b) below: 

26a. A lion has a mane because it is a lion. 
               b. A lion has four legs because it is a lion.* 

The former is an example of a felicitous formal explanation while the latter 
is an infelicitous explanation, and as the examples show, some properties afford 
formal explanations while others do not (Prasada & Dillingham, 2006, 2009; 
Prasada et al., 2013). “Teleological” explanations, also referred to as “final” 
explanations, are similarly non-causal. They help explain a property by appealing 
to its function, goal, or end result. Children use teleological explanations 
throughout development, e.g., they endorse statements such as “pens are for 
writing” and “mountains are for climbing” (Kelemen, 1999; Kelemen & DiYanni, 
2005). Adults are more skeptical and introspective about these claims; they use 
teleological explanations for artifacts more often than for natural kinds (Lombrozo 
& Carey, 2006).  

Nevertheless, the vast majority of daily explanations refer to causal 
relations. To explain how wine turns into vinegar, why coral reefs are dying, or 
how a prediction market works, for instance, you need to identify the underlying 
components in each phenomenon as well as their causal relations to one another. 



Explanatory reasoning appears to develop alongside causal reasoning (Wellman & 
Liu, 2007). Callanan and Oakes (1992) conducted a study in which they asked 
mothers to keep records of their children’s requests for explanations. The children 
in the study asked numerous questions about causal relations concerning natural 
and mechanical phenomena (e.g., “Why do stars twinkle?”, “How does that 
wheelchair work?”). More recently, Hickling and Wellman (2001) examined 
children’s conversations and coded them for causal questions and explanations. In 
both approaches, requests for causal explanations appeared early in development 
and were produced more frequently than causal propositions. Indeed, “why?” 
questions were amongst the earliest utterances produced by the children.  

Adults frequently generate causal explanations, too (Einhorn & Hogarth, 
1986; Hilton & Erb, 1996). When explanations contain both causal and non-causal 
elements, causal elements tend to influence patterns of judgment over non-causal 
ones (Murphy & Medin, 1985). Causal explanations appear to facilitate category 
learning and induction (Rehder & Hastie, 2004). Causes that occur early in a 
causal chain, and causes that are causally interconnected, are deemed more 
important (Ahn, Kim, Lassaline, & Dennis, 2000; Khemlani & Johnson-Laird, 
2015). Hence, causal structures have a unique and indispensable role in abductive 
reasoning. 

There are two overarching ways in which causes enter into explanatory 
reasoning. First, reasoners evaluate the causal structure of explanations based on 
numerous factors, such as how parsimonious the structure is, how complete it is, 
and how well it coheres with other beliefs. Second, reasoners generate causal 
structures that suffice as explanations. Let us examine each of these behaviors. 

Evaluating explanatory fitness 
As Lombrozo (2016) argues, untrained reasoners reliably prefer certain 

types of explanations over others (see also Keil, 2006; Lombrozo, 2006). In daily 
life, people often evaluate whether a given explanation is compelling, justified, 
and worth pursuing (Zemla, Sloman, & Lagnado, in press) particularly to 
understand complex phenomena and to resolve inconsistencies. From Newton to 
Peirce, philosophers and scientists argue that scientific explanations should be 
broad, and recent studies suggest some biases toward preferring simpler 
explanations (Chater, 1996; Einhorn & Hogarth, 1986; Lagnado, 1994; Lombrozo, 
2007). For example, in one study, Lombrozo (2007) gave participants problems 
concerning diseases and symptoms of aliens on another planet, e.g.:  

The alien, Treda, has two symptoms: her minttels are sore and she has 
developed purple spots. Tritchet’s syndrome always causes both sore minttels and 
purple spots. Morad’s disease always causes sore minttels, but the disease never 
causes purple spots. When an alien has a Humel infection, that alien will always 



develop purple spots, but the infection will never cause sore minttels. What do you 
think is the most satisfying explanation for the symptoms that Treda is exhibiting?  

Participants preferred the simpler explanation (Tritchet’s syndrome) to a 
complex one (the combination of Morad’s disease and a Humel infection) despite 
knowing that Treda could possess multiple illnesses. Lombrozo argues that this 
preference reflects a general bias toward more simple explanations, and other data 
in support of simplicity biases has led some researchers to argue that simplicity is 
a fundamental cognitive principle (Chater & Vitanyi, 2003). 

An idea that runs parallel to simplicity is that good explanations are often 
coherent, i.e., their causal elements cohere with themselves (internal coherency), 
with facts about the world (external coherence), and do not contain 
inconsistencies. Proponents of coherentism hold that good explanations ought to 
be thought of as sets of beliefs which act as an organized, interdependent unit that 
does not depend on lower levels of explanation (Amini, 2003; Read & Marcus-
Newhall, 1993; Thagard, 2000; Van Overwalle, 1998). Coherent explanations do 
not make assumptions specific to a particular phenomenon, and so Lombrozo 
(2016) interprets coherentism as related to simplicity. But, few empirical studies 
have directly examined the preference for coherency apart from studies by Read 
and Marcus-Newhall (1993), and so commitments to coherency must be qualified: 
as Keil (2006) observes, coherency is often violated because knowledge is 
incomplete and inconsistent (see also Gillespie & Esterly, 2004). 

Indeed, preferences for simpler and more coherent explanations may be 
overridden by other factors. Individuals often prefer complex explanations that are 
more complete, i.e., ones that satisfy expectations about an underlying causal 
mechanism. For instance, Johnson-Laird et al. (2004) ran experiments in which 
they solicited participants’ spontaneous explanations as well as their probability 
ratings for explanations that consisted of a cause versus those that consisted of a 
cause and an effect when reasoning about conflicting information. For example, 
reasoners were given the following problem:  

If someone pulled the trigger, then the gun fired. Someone pulled the 
trigger, but the gun did not fire. Why not?  

and rated two putative explanations for the gun not firing:  
27a. A prudent person unloaded the gun and there were no bullets in the 
chamber. 
    b. There were no bullets in the chamber.  

They systematically rated (27a) more probable than (27b). Recent studies 
replicated the phenomenon, and suggest that reasoners prefer complete 
explanations to incomplete ones (Legrenzi & Johnson-Laird, 2005) and to non-
explanations (Khemlani & Johnson-Laird, 2011). These preferences may be 
construed as an error, because rating (27a) as more probable than (27b) is an 



instance of the conjunction fallacy (Tversky & Kahneman, 1983). More recently, 
Zemla and colleagues (in press) asked reasoners to rate naturalistic explanations 
for various questions submitted to the online bulletin board system, Reddit (e.g., 
“Why has the price of higher education skyrocketed in the US…?”) and found that 
people rated complex explanations submitted by users more convincing than 
simpler explanations. Subsequent experimental studies corroborated this 
preference.  

Good explanations are often relevant and informative (Grice, 1975; Wilson 
& Sperber, 2004), and they can fail when speakers provide too much information 
– under the assumption that the listener lacks information that, in fact, she knows – 
or else when they provide too little – under the assumption that the listener knows 
information than she, in fact, lacks. Irrelevant explanations can occur as a result of 
an egocentric bias in which people mistakenly assume that listeners share the same 
knowledge they do (Hilton & Erb, 1996; Keysar, Barr, & Horton, 1998; Krauss & 
Glucksberg, 1969; McGill, 1990; Nickerson, 2001). To calibrate an explanation to 
a listener’s knowledge, speakers must overcome a “curse of knowledge” (Birch & 
Bloom, 2003) in which their detailed knowledge can interfere with their 
understanding of what their listener does not know. Egocentrism can be overcome 
by negotiating or inferring common background information between speakers 
and listeners (Clark, 1996; Levinson, 2000). One promising account of this 
negotiation process is rational speech-act theory, which formalizes the inference of 
common background information as form of Bayesian inference over a speaker’s 
knowledge state and a listener’s interpretation of the speaker’s words (Frank & 
Goodman, 2012; Goodman & Stuhlmüller, 2013). 

The cosmologist Max Tegmark wrote that a good explanation “answers 
more than you ask” (cited in Brockman, Ferguson, & Ford, 2014). He shares the 
view of many scientists and philosophers who note that scientific explanations 
should be broad (Kuhn, 1977; Whewell, 1840). A reasonable psychological 
prediction is that people should prefer explanations with broad scope as well (see 
Thagard, 1992), and they often do. In the aforementioned studies by Read and 
Marcus-Newhall (1993), participants learned a few facts about an arbitrary 
woman, e.g., that she has nausea, weight gain, and fatigue. They consistently 
preferred broad scope explanations (e.g., “she is pregnant”) that explained all of 
the facts to narrow scope explanations (e.g., “she has a stomach virus”) that 
explained only a subset of the facts. In situations of complete, certain information, 
broad scope explanations seem sensible. But, those situations are rare, and 
abduction often serves to resolve situations of uncertainty and inconsistency. 
Hence, good explanations often explain only what needs to be explained (manifest 
scope) and not unobserved phenomena (latent scope), reasoners appear to prefer 
explanations of narrow latent scope (Johnson, Rajeev-Kumar, & Keil, 2014, 2016; 
Khemlani, Sussman, & Oppenheimer, 2011; Sussman, Khemlani, & Oppenheimer, 



2014). In experiments due to Khemlani, Sussman, and Oppenheimer (2011), 
participants were given problems of the following form:  

A causes X and Y. 
B causes X, Y, and Z. 
Nothing else is known to cause X, Y, or Z. 
X occurred; we don’t know whether or not Y or Z occurred.  

In the study, A, B, X, Y, and Z were replaced by sensible contents. As the problem 
makes evident, Explanation A has narrower latent scope than Explanation B, 
because it can account for fewer effects. Individuals judged A to be more 
satisfying and more probable relative to B. Children exhibit a similar bias 
(Johnston, Johnson, Koven, & Keil, in press), and a recent account suggests that 
people base their preferences for A over B on an inference concerning the 
uncertain, unverified prediction (i.e., Y or Z; see Johnson, Rajeev-Kuman, & Keil, 
2016). In any case, the bias toward narrow scope explanations can conflict with a 
bias toward simplicity, because some explanations can be both more complex and 
more narrow than simpler alternatives. 

Table 5 provides an overview of the different biases that exist in human 
explanatory reasoning. The list itself appears internally inconsistent: how can 
reasoners maintain biases for both simplicity and complexity and narrower scope? 
These fundamental conflicts in explanatory reasoning stand in need of resolution. 
Perhaps a bias for simplicity is too simple an account of explanatory evaluation, 
but its alternative – that reasoners prefer complexity – is strictly false, because 
reasoners tend to avoid infinite regress when constructing explanations. These 
conflicts result may come from a scarcity of theoretical accounts of explanatory 
reasoning. Few accounts exist that explain how explanations are generated in the 
first place, and those that do tend to emphasize the role of retrieving explanatory 
hypotheses from memory (but cf. Johnson-Laird et al., 2004; Thomas, Dougherty, 
Sprenger, & Harbison, 2008). A recent proposal assumes that reasoners rely on a 
set of heuristics to construct explanations.   

Insert Table 5 about here. 

Explanatory heuristics 
How do people generate explanations? Studies that reveal preferences from 

some explanations over others lend little insight into the processes by which 
reasoners construct explanations. Apart from a lack of relevant data, there is an 
overarching theoretical paradox for why nobody has proposed any such process-
level account: on the one hand, explanatory reasoning appears to be an 
enormously complex task to carry out. Reasoners must search through their 
semantic memories, i.e., through vast amounts of conceptual and relational 
knowledge; they must creatively combine relevant portions of that knowledge to 



produce a plausible causal mechanism; and they must assess their putative 
explanation against their knowledge about the phenomenon. Much of our 
understanding of the complexity of the operations needed to build explanations 
suggests that they should demand extensive computation. On the other hand, 
people construct explanations rapidly. Reasoners do not appear to be flummoxed 
when constructing an explanation, and many are capable of offering multiple 
explanatory guesses. Why is a friend of yours running late? Perhaps he is stuck in 
traffic, perhaps his prior meeting ran late, perhaps he is injured or sick. And so, the 
speed with which you construct and then evaluate these explanations suggests that 
explanations should are easy to generate. This is what I call the “paradox of fast 
explanations”, and without resolving it, an account of how people generate 
explanations will remain elusive. 

Cimpian and Salomon (2014) recently proposed a theory that may resolve 
the paradox of fast explanations. They argue that people generate initial 
explanations heuristically and that these heuristic explanations concern inherent 
features, i.e., features internal to the elements of a phenomenon. Consider this 
question: “Why do people drink orange juice in the morning?” Cimpian and 
Saloman argue that when reasoners first identify patterns in the world (e.g., that 
people drink orange juice for breakfast) they spontaneously explain those patterns 
in terms of, say, the tanginess of orange juice instead of the promotion of oranges 
by the citrus lobby. The former is a property intrinsic of orange juice and the latter 
is a property external to the phenomena to be explained. 

What happens during the construction process? Cimpian and Salomon 
propose that the main entities of the phenomenon to be explained (orange juice as 
a breakfast beverage) become active in working memory, and that the activation of 
these memories spreads to inherent properties that are a central to the 
representation of the entities in semantic memory (see McRae & Jones, 2013), 
such as the tanginess of orange juice. Hence, reasoners are likely to retrieve those 
properties and base their explanations on them. Thus, when the cognitive system 
assembles an explanation, its output will be skewed towards explanatory intuitions 
that appeal to the inherent features of the relevant focal entities. And recent studies 
by Cimpian and his colleagues corroborate reasoners’ spontaneous use of 
heuristics in explanation (e.g., Cimpian & Steinberg, 2014; Horne, 2017; Hussak 
& Cimpian, 2015; Sutherland & Cimpian, 2015). 

Summary 
Psychologists have begun to catalog a set of explanatory preferences, and in 

the coming years, researchers should discover new factors that separate 
compelling explanations from unconvincing ones. But, the conjunction of the 
existing preferences does not constitute a theory, and indeed, there presently exists 
no theory of domain-general explanatory reasoning. The quest for such a theory 



may prove chimerical: reasoners’ preferences for certain kinds of explanations 
may be an artifact of the kinds of impoverished problems they face in laboratory 
settings. Still, two general – and conflicting – trends have emerged from recent 
investigations: first, reasoners prefer simple explanations that broadly account for 
observed information. And second, they prefer complex explanations that 
elucidate underlying mechanisms and do not explain more than what is observed 
or known about a particular phenomenon. It may be that these two general 
preferences mirror universal cognitive strategies for exploiting and exploring: in 
some situations, reasoners are motivated to exploit known information to save 
cognitive resources, and in others, they benefit from exploring the space of 
possibilities. One potentially productive line of investigation might attempt to 
characterize the scenarios under which reasoners choose to explore instead of 
exploit, and vice versa. Still, a general theory cannot account only for how people 
assess given explanations; it needs to describe the cognitive processes that 
generate explanations. 

Conclusion 
Towards the end of his chapter on speech and language in the first edition 

of the Stevens’ Handbook of Experimental Psychology, George Miller described 
seminal research into the psychology of reasoning behavior. At the time, 
psychologists had proposed early accounts of syllogistic inference, but a sustained 
research program into reasoning wouldn’t emerge for another few decades, and so 
his review comprised only a few paragraphs. Progress was swift. By the time the 
second edition of the Stevens’ Handbook was published in the late 1980s, theorists 
had developed novel methodologies for studying thinking behavior and a 
community of researchers in artificial intelligence, psychology, and philosophy 
had developed new formal and computational frameworks to characterize human 
reasoning. And so, James Greeno and Herb Simon devoted an entire chapter to the 
burgeoning field (Greeno & Simon, 1988). In 2002, so many theories of reasoning 
had flourished that Lance Rips sought to categorize them into various families in 
his chapter in the third edition of the Stevens’ Handbook (Rips, 2002).  

Many of the advances that occurred in the years since the third edition 
produced important new controversies and debates, and this chapter reviewed 
three of them. First, while decades old skepticism that everyday inferences 
correspond to those sanctioned by conventional logic persists, reasoning 
researchers had few alternative options for formal accounts of what counts as a 
rational deduction. In the last decade, theories of rational inference matured into 
two competing research programs, and the first section of this chapter explored the 
debate. One account, commonly referred to as the “new paradigm”, proposes that 
reasoning is inherently probabilistic, i.e., that premises and conclusions – 



particularly those that concern conditional assertions – are best formalized in the 
probability calculus, where inferences transform prior beliefs into posterior 
probabilities. Another account, the model theory, holds that reasoning depends on 
the mental simulation of iconic possibilities (“mental models”). Reasoners 
construct and scan these possibilities to draw conclusions, and inferences are 
difficult when they need to consider multiple possibilities. Both accounts agree on 
some fundamental assumptions: reasoning is uncertain and non-monotonic; the 
everyday use of compound assertions is not truth functional; reasoning depends on 
both the form and the contents of the premises. But they diverge in important 
ways, too (see Johnson-Laird et al., 2015a,b, and Baratgin et al., 2015). The 
probabilistic account explains human reasoning as an application of Bayesian 
inference, which had previously been used to explain learning. And so, the 
probabilistic account connects reasoning and learning in novel ways. The model 
theory, in contrast, explains human difficulty and inferential biases, and its goal is 
to characterize the constraints of the mental representations that reasoners 
typically build. At the time of writing, no single dataset or experimental paradigm 
seems sufficient enough to adjudicate the two accounts. Nevertheless, the two 
approaches are getting closer to one another, not farther away. Researchers have 
begun to merge notions of mental simulation and probabilistic inference (see, e.g., 
Battaglia, Hamrick, & Tenenbaum, 2013; Gerstenberg, Goodman, Lagnado, & 
Tenenbaum, 2012; Hattori, 2016; Khemlani et al., 2015b; Khemlani & Johnson-
Laird, 2013, 2016; Oaksford & Chater, 2010; Sanborn, Mansighka, & Griffiths, 
2013). Perhaps a hybrid approach may resolve the extant controversies between 
the two accounts, or perhaps a new framework for thinking about rationality is 
needed. Any sort of advance would to need to resolve the controversies raised by 
the probabilistic and the simulation-based accounts, however. 

A second major debate concerns the difference between inductive reasoning 
and deductive reasoning. Scholars since antiquity had characterized induction and 
deduction as separate constructs, and that tradition carried into contemporary 
psychology. But, not until the early part of this century did researchers conduct 
rigorous tests of whether induction and deduction arise from separate mental 
processes. Initial work by Lance Rips triggered a debate between several 
communities of researchers. They sought to explain why reasoners judge 
compelling, but invalid, inductive inferences as strong and why they 
simultaneously accept unconvincing deductions as valid. The relation between 
induction and deduction remains unclear, but research shows that two accounts 
under investigation, i.e., the account that posits that induction and deduction rely 
on distinct mental processes and the account that supposes that induction and 
deduction rely on a unitary mental process, are both viable. Hence, a task for 
future research is to explain when and how inductive and deductive reasoning 
processes diverge from one another. And the interplay between inductive and 
deductive inference may be particularly pronounced when reasoning about unique 



probabilities and defaults, because both sorts of inference require reasoners to base 
their information on uncertain background knowledge and dynamic situations. 

Despite some formal accounts of abductive reasoning in the artificial 
intelligence community, as well as many conceptual frameworks proposed by 
philosophers, empirical work into the processes by which people construct 
explanations prior to the turn of the century was rare and exceptional. In the years 
that followed, explanatory reasoning research grew into a sustained focus for 
cognitive scientists. Indeed, explanatory reasoning can be considered one of the 
field’s major growth industries. Researchers have begun to investigate the biases 
by which some explanations are deemed more compelling than others, as well as 
the constraints on those preferences (see Lombrozo, 2016, for a review). One 
major advantage of researching explanatory reasoning seems to be that children 
utilize their burgeoning linguistic abilities to ask and understand their parents’ 
explanations. Hence, it is sensible to study how explanatory reasoning shifts and 
changes across the lifespan. Nevertheless, explanations can be challenging to 
investigate, because reasoners spontaneously draw information from their 
background knowledge to build explanations. And so, explanations pose a 
challenge to empirical researchers and their desire for highly controlled laboratory 
studies. Perhaps that is one reason that, despite pronounced interest in explanatory 
reasoning, few theories exist that can explain a fundamental paradox of 
explanatory reasoning: reasoners appear to draw explanations rapidly, despite the 
need to search through vast amounts of conceptual knowledge. Recent work 
targets this “paradox of fast explanations”, and suggests that explanatory 
reasoning, like other aspects of cognition, is subject to heuristics that yield rapid, 
but often inaccurate, hypotheses for observations. 

George Miller had tentative (and accurate) conclusions about the state of 
reasoning research circa 1950. He wrote: 

“The importance of verbalization in thinking is an unsettled issue in 
psychology. … The most we can say is that many people converse with 
themselves, and if they are interrupted they will say they are thinking.” 

(Miller, 1951, p. 804) 
Plainly, an optimist should view recent advances with excitement. Scientists can 
now say much more about the underlying processes that lead from premises to 
conclusions. Consensus exists that reasoning in daily life diverges from the norms 
set by orthodox logic, and that many premises and conclusions are inherently 
uncertain. And a growing group of researchers views theoretical accounts as 
insufficiently constrained until and unless they are implemented computationally. 
A pessimistic outlook holds that the explosion of new theories produced an 
unweildy number of controversies for the reasoning community to tackle. A 
unified approach is needed, and extant debates must come to resolution. The not-



so-hidden agenda of this chapter is to spur researchers to resolve existing 
controversies – or at the very least, discover new ones. 
 

Definitions and Terms 
Abduction 

A process designed to infer a hypothesis about an observation or premise. 
Abductive reasoning is a form of inductive reasoning. 

Deduction 

A process designed to draw valid conclusions from the premises, i.e., conclusions 
that are true in any case in which the premises are true. 

Default reasoning 

Reasoning with assumptions that hold by default, but that can be overturned when 
new information is available.  

Defective truth table 

A truth table of a conditional assertion, “If A then C”, that has no truth value when 
A is false. (Also known as the de Finetti truth table). 

Fully explicit model 

A fully explicit model is a mental representation of a set of possibilities that 
depicts whether each clause in a compound assertion is true or not. The fully 
explicit models of a disjunction, “A or B, but not both” represents two 
possibilities: the possibility in which A occurs and B does not, and the possibility 
in which B occurs and A does not. 

Induction 

A process designed to draw plausible, compelling, or likely conclusions from a set 
of premises. The conclusions drawn from an inductive inference are not always 
true in every case in which the premises are true. 

Logic 

The discipline that studies the validity of inferences, and the formal systems 
produced by the discipline. Many logical systems exist, and each system is built 
from two main components: proof theory and model theory. 



Mental model 

An iconic representation of a possibility that depicts only those clauses in a 
compound assertion that are possible. Hence, the mental model of a disjunctive 
assertion, “A or B, but not both” represents two possibilities: the possibility in 
which A occurs and the possibility in which B occurs. 

Model theory (logic) 

The branch of logic that accounts for the meaning of sentences in the logic and 
explains valid inferences. 

Model theory (psychology) 

The psychological theory that humans build iconic models of possibilities in order 
to think and reason. 

Monotonicity 

The property of many formal systems of logic in which the introduction of 
additional premises leads to additional valid inferences. 

Non-monotonicity 

The property of everyday reasoning (and some formal systems of logic) in which 
additional information can lead to the withdrawal of conclusions. 

Probabilistic logic 

A paradigm for reasoning that focuses on four hypotheses: Ramsey’s test 
embodies conditional reasoning; truth tables for conditionals are defective; the 
probability of a conditional is equal to a conditional probability; and rational 
inferences are probabilistically valid. 

Probabilistic reasoning 

Reasoning about premises that are probabilistic, or else reasoning that produces 
probabilistic conclusions. 

Probabilistic validity 

P-valid inferences concern conclusions that are not more informative than their 
premises. 

Proof theory 

A branch of logic that stipulates the formal rules of inference that sanction the 
formulas that can be derived from other formulas. The system can be used to 
construct proofs of conclusions form a set of premises. 



Ramsey test 

A thought experiment designed to determine a degree of belief in a conditional 
assertion, “If A then C”. To carry out the experiment, a reasoner adds A to her set 
of beliefs and then assesses the likelihood of C. 

Truth functional 

A compound assertion, e.g., “If A then C”, is truth functional if its truth value is 
defined as a function of the truth of its constituent assertions, i.e., the truth of A 
and the truth of C. 

Truth table 

A systematic table that depicts the truth values of a compound assertion, such as a 
conjunction, that hold as a function of the truth values of its clauses. 

Validity 

A logical inference is valid if its conclusion is true in every case in which its 
premises are true. 
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Figures and Tables 
 

 

Figure 1. Percentages of various responses to the question “What proportion of As are Cs?” 
(panel A) and “What proportion of As must be Cs?” (panel B) for basic and probabilistically 
marked conditionals (reproduced from Goodwin, 2014, Figure 1 and 2, with permission). 
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Table 1. Three overarching frameworks of rationality, their primary principles and hypotheses, the kinds of representational structures 
on which proposed mechanisms operate, the manner in which content and background knowledge affect the mechanisms, and the 
accounts of validity the frameworks espouse. 

Framework of 
rationality Principle Central hypotheses Structure Content 

Mental logic People manipulate propositional 
representations of beliefs and facts by 
applying syntactic transformations (rules of 
inference) to those propositions. The mind 
is equipped with a finite set of such rules, 
which dictate whether new propositions can 
be introduced or old ones eliminated. 

• The more rules of inference it takes to 
solve a problem, the harder the 
problem 

• People make unsystematic errors in 
reasoning when they fail to apply 
logical rules of inference 

Propositions and 
proofs 

Meaning postulates that 
axiomatize various domains of 
inference, e.g., spatial and 
causal reasoning 

Probabilistic 
logic 

People rarely hold any belief with absolute 
certainty, and so uncertainty is present in all 
scientific reasoning and decision making. 
The probability calculus and its identities 
(e.g., Bayes’s rule) serves as a mathematical 
account of uncertainty, and it is central to 
understanding reasoning. 

• Subjective probabilities are an index of 
belief strength 

• Reasoners apply the Ramsey test to 
assess conditionals 

• The probability of a conditional is its 
conditional probability 

• Conditionals have a defective (de 
Finetti) truth table 

Conditional 
probabilities; 
Bayesian networks 

Prior probability distributions 
that represent belief strength, 
posterior probabilities 

Mental models People mentally simulate the world when 
they reason. The more simulations 
(“models”) they consider, and the richer 
those models are, the more accurate their 
responses are. Humans are rational in 
principle, but err when they fail to consider 
possibilities. 

• People make systematic errors in 
reasoning 

• They correct errors by considering 
counterexamples in which the 
premises are true but the conclusion 
false 

• The more models it takes to solve a 
problem, the harder the problem 

Models, i.e., iconic 
simulations of 
possibilities 

The relational structure inherent 
within models; models in the 
form of background knowledge 
that eliminate possibilities and 
introduce relations 

 
	  



Table 2. Semantic definitions of logical connectives for two sentences, A and C, in formal logic, probability logic, and mental model 
theory. The first column illustrates the four states of affairs that can occur with A and C on separate rows. For example, the first row 
depicts the situation in which A and C are both true. The rest of the columns illustrate how various connectives are defined relative to 
the four contingencies. Proponents of probabilistic logic import many of the assumptions of orthodox logic, but interpret conditionals 
as having a “defective” truth table, i.e., one that has no truth values when the antecedent of a conditional, A, is false. Proponents of 
mental model theory interpret the four states of affairs as possibilities, not truth values.  

    Formal logic   Probabilistic logic  Mental models 

  
 

Conjunction Inclusive 
disjunction Negation Material 

conditional 
 

Defective conditional 
 

Conjunction 
Basic 

conditional 

Contingency  A & C A v C ¬A A ® C  If A then C  A and C If A then C 

A and C  True True False True  True  Possible Possible 

A and not C  False True False False  False  Impossible Impossible 

Not A and C  False True True True  No truth value  Impossible Possible 

Not A and not C  False False True True  No truth value  Impossible Possible 

 
	  



Table 3. Summary of robust phenomena of inductive arguments that increase the propensity to generalize a given property. The table 
lists each phenomenon and its description, provides an illustrative example, and in brackets, provides a contrasting example of a 
situation that violates the phenomenon. 

Phenomenon The propensity to make an inductive 
inference increases when… 

Example inference [and contrast] Representative citation 

Similarity …the category of the premise is similar 
to the category of a conclusion 

Rabbits have property X. 
Therefore, dogs [bears] have property X. 

Florian (1994) 
Rips (1975) 

Typicality …the premise category is a more typical 
member of its superordinate category 

Bluejays [geese] have property X. 
Therefore, Ys have property X. 

Osherson et al. (1990) 
Rips (1975) 

Variability …there is less variance in the behavior 
of the premise category (i.e., it is more 
homogeneous) 

One sample of a chemical [member of a tribe] has property 
X. 
Therefore, all instances of the chemical [members of the 
tribe] have property X. 

Nisbett et al. (1983) 

Sample size …more instances of the premise 
category exhibit the property (interacts 
with variability effect) 

Five members of a tribe [one member of a tribe] have 
property X. 
Therefore, all members of the tribe have property X. 

Nisbett et al. (1983) 
Osherson et al. (1990) 

The inclusion fallacy …the premise and conclusion categories 
are similar regardless of violations of 
probability theory 

Robins have property X. 
Therefore, all birds have property X. 
[Therefore, ostriches have property X.] 

Osherson et al. (1990) 
Sloman (1993) 

Diversity …the categories in the premises are 
more diverse from one another, and the 
conclusion category is a superordinate 

Horses, seals, and squirrels [horses, cows, and rhinos] have 
property X. 
Therefore, mammals have property X. 

Carey (1985) 
López (1995) 
(but cf. Osherson et al, 1990; 
Sloman, 1993) 

Explanations …an explanation of the premise accords 
with an explanation of the conclusion 

Many ex-cons are hired as bodyguards [unemployed]. 
Therefore, many war veterans are hired as bodyguards 
[unemployed]. 

Shafto & Coley (2004) 
Sloman (1994, 1997) 

 

	  



Table 4. Summary of formal models of inductive reasoning. 

Model Citation Description 

Similarity coverage model Osherson et al. (1990) Inductive strength is a function of the similarity of the conclusion to 
the premises as well as the “coverage”, i.e., the ratio between the 
size of the category described by the premises and the size of the 
lowest possible superordinate category that includes both the 
premise and conclusion categories. 

 

Feature-based model Sloman (1993) Inductive strength is a function of the amount of feature overlap 
between the premise and conclusion categories. 

Gap model Smith et al. (1993) For blank features, inductive strength follows Osherson et al. 
(1990); for familiar features, strength is a function of both similarity 
and a “gap”, i.e., a threshold initially derived from background 
knowledge that designates whether a conclusion category possesses 
the feature. The premise may shift the threshold upwards or 
downwards. 

Bayesian models Heit (1998) 
Kemp & Tenenbaum (2009) 

Premises are treated as evidence, which is used to carry out 
Bayesian inference over prior beliefs to estimate the probability of 
the conclusion. Heit (1998) described the mathematical formalism of 
the inference but did not specify the representation of prior 
probabilities; Kemp and Tenenbaum (2009) extended the formalism 
to operate on prior probabilities derived from structured background 
knowledge. 



Table 5. Various types of preferences for explanations, their descriptions, and empirical 
studies of the preference.  

Factor Description Empirical studies 

Simplicity Simple explanations are those that concern 
relatively fewer causal relations and 
mechanisms than more complex alternatives. 

(Bonawitz & Lombrozo, 2012; 
Lagnado, 1994; Lombrozo, 
2007; Walker, Bonawitz, & 
Lombrozo, in press) 

Coherence Coherent explanations depend on causal 
relations from background knowledge (external 
coherence) or else those relevant to other links 
in the proposed causal mechanism (internal 
coherence). They avoid ad hoc causal relations.  

(Read & Marcus-Newhall, 
1993) 

Completeness Complete explanations posit causal mechanisms 
and relations that satisfy reasoners’ 
expectations. Incomplete explanations leave 
expected causal relations unspecified. 

(Johnson-Laird et al., 2004; 
Khemlani & Johnson-Laird, 
2011; Legrenzi & Johnson-
Laird, 2005; Zemla et al., in 
press) 

Relevance Relevant explanations provide information 
pertinent to a conversation, i.e., from the same 
domain of discourse or, via analogy, from a 
different domain as in with a similar relational 
structure. Irrelevant explanations provide too 
much or too little information, or else a 
relational structure that fails to map coherently 
to the domain of discourse. 

(Hilton, 1996; McGill, 1990) 

Latent scope Explanations that explain many different 
observed phenomena have broad manifest 
scope. Explanations that do not explain 
unknown, uncertain, or unobserved phenomena 
have narrow latent scope. 

(Johnson et al., 2014, 2016; 
Johnston et al., in press; 
Khemlani et al., 2011; 
Sussman et al., 2014) 

 


